Implementation of a standard feed forward network. More...
Public Types | |
using | NetworkType = FFN< OutputLayerType, InitializationRuleType > |
Convenience typedef for the internal model construction. More... | |
Public Member Functions | |
FFN (OutputLayerType outputLayer=OutputLayerType(), InitializationRuleType initializeRule=InitializationRuleType()) | |
Create the FFN object. More... | |
FFN (const FFN &) | |
Copy constructor. More... | |
FFN (FFN &&) | |
Move constructor. More... | |
~FFN () | |
Destructor to release allocated memory. More... | |
template<class LayerType , class... Args> | |
void | Add (Args... args) |
void | Add (LayerTypes< CustomLayers... > layer) |
template < typename PredictorsType , typename TargetsType , typename GradientsType > | |
double | Backward (const PredictorsType &inputs, const TargetsType &targets, GradientsType &gradients) |
Perform the backward pass of the data in real batch mode. More... | |
template < typename PredictorsType , typename ResponsesType > | |
double | Evaluate (const PredictorsType &predictors, const ResponsesType &responses) |
Evaluate the feedforward network with the given predictors and responses. More... | |
double | Evaluate (const arma::mat ¶meters) |
Evaluate the feedforward network with the given parameters. More... | |
double | Evaluate (const arma::mat ¶meters, const size_t begin, const size_t batchSize, const bool deterministic) |
Evaluate the feedforward network with the given parameters, but using only a number of data points. More... | |
double | Evaluate (const arma::mat ¶meters, const size_t begin, const size_t batchSize) |
Evaluate the feedforward network with the given parameters, but using only a number of data points. More... | |
template < typename GradType > | |
double | EvaluateWithGradient (const arma::mat ¶meters, GradType &gradient) |
Evaluate the feedforward network with the given parameters. More... | |
template < typename GradType > | |
double | EvaluateWithGradient (const arma::mat ¶meters, const size_t begin, GradType &gradient, const size_t batchSize) |
Evaluate the feedforward network with the given parameters, but using only a number of data points. More... | |
template < typename PredictorsType , typename ResponsesType > | |
void | Forward (const PredictorsType &inputs, ResponsesType &results) |
Perform the forward pass of the data in real batch mode. More... | |
template < typename PredictorsType , typename ResponsesType > | |
void | Forward (const PredictorsType &inputs, ResponsesType &results, const size_t begin, const size_t end) |
Perform a partial forward pass of the data. More... | |
void | Gradient (const arma::mat ¶meters, const size_t begin, arma::mat &gradient, const size_t batchSize) |
Evaluate the gradient of the feedforward network with the given parameters, and with respect to only a number of points in the dataset. More... | |
const std::vector< LayerTypes< CustomLayers... > > & | Model () const |
Get the network model. More... | |
std::vector< LayerTypes< CustomLayers... > > & | Model () |
Modify the network model. More... | |
size_t | NumFunctions () const |
Return the number of separable functions (the number of predictor points). More... | |
FFN & | operator= (FFN) |
Copy/move assignment operator. More... | |
const arma::mat & | Parameters () const |
Return the initial point for the optimization. More... | |
arma::mat & | Parameters () |
Modify the initial point for the optimization. More... | |
void | Predict (arma::mat predictors, arma::mat &results) |
Predict the responses to a given set of predictors. More... | |
const arma::mat & | Predictors () const |
Get the matrix of data points (predictors). More... | |
arma::mat & | Predictors () |
Modify the matrix of data points (predictors). More... | |
void | ResetParameters () |
Reset the module infomration (weights/parameters). More... | |
const arma::mat & | Responses () const |
Get the matrix of responses to the input data points. More... | |
arma::mat & | Responses () |
Modify the matrix of responses to the input data points. More... | |
template < typename Archive > | |
void | serialize (Archive &ar, const uint32_t) |
Serialize the model. More... | |
void | Shuffle () |
Shuffle the order of function visitation. More... | |
template<typename OptimizerType , typename... CallbackTypes> | |
double | Train (arma::mat predictors, arma::mat responses, OptimizerType &optimizer, CallbackTypes &&... callbacks) |
Train the feedforward network on the given input data using the given optimizer. More... | |
template<typename OptimizerType = ens::RMSProp, typename... CallbackTypes> | |
double | Train (arma::mat predictors, arma::mat responses, CallbackTypes &&... callbacks) |
Train the feedforward network on the given input data. More... | |
template < typename OptimizerType > | |
std::enable_if< HasMaxIterations< OptimizerType, size_t &(OptimizerType::*)()>::value, void >::type | WarnMessageMaxIterations (OptimizerType &optimizer, size_t samples) const |
Check if the optimizer has MaxIterations() parameter, if it does then check if it's value is less than the number of datapoints in the dataset. More... | |
template < typename OptimizerType > | |
std::enable_if< !HasMaxIterations< OptimizerType, size_t &(OptimizerType::*)()>::value, void >::type | WarnMessageMaxIterations (OptimizerType &optimizer, size_t samples) const |
Check if the optimizer has MaxIterations() parameter, if it doesn't then simply return from the function. More... | |
Implementation of a standard feed forward network.
OutputLayerType | The output layer type used to evaluate the network. |
InitializationRuleType | Rule used to initialize the weight matrix. |
CustomLayers | Any set of custom layers that could be a part of the feed forward network. |
using NetworkType = FFN<OutputLayerType, InitializationRuleType> |
FFN | ( | OutputLayerType | outputLayer = OutputLayerType() , |
InitializationRuleType | initializeRule = InitializationRuleType() |
||
) |
Create the FFN object.
Optionally, specify which initialize rule and performance function should be used.
If you want to pass in a parameter and discard the original parameter object, be sure to use std::move to avoid unnecessary copy.
outputLayer | Output layer used to evaluate the network. |
initializeRule | Optional instantiated InitializationRule object for initializing the network parameter. |
~FFN | ( | ) |
Destructor to release allocated memory.
|
inline |
double Backward | ( | const PredictorsType & | inputs, |
const TargetsType & | targets, | ||
GradientsType & | gradients | ||
) |
Perform the backward pass of the data in real batch mode.
Forward and Backward should be used as a pair, and they are designed mainly for advanced users. User should try to use Predict and Train unless those two functions can't satisfy some special requirements.
inputs | Inputs of current pass. |
targets | The training target. |
gradients | Computed gradients. |
Referenced by FFN< OutputLayerType, InitializationRuleType, CustomLayers >::Predictors().
double Evaluate | ( | const PredictorsType & | predictors, |
const ResponsesType & | responses | ||
) |
Evaluate the feedforward network with the given predictors and responses.
This functions is usually used to monitor progress while training.
predictors | Input variables. |
responses | Target outputs for input variables. |
double Evaluate | ( | const arma::mat & | parameters | ) |
Evaluate the feedforward network with the given parameters.
This function is usually called by the optimizer to train the model.
parameters | Matrix model parameters. |
double Evaluate | ( | const arma::mat & | parameters, |
const size_t | begin, | ||
const size_t | batchSize, | ||
const bool | deterministic | ||
) |
Evaluate the feedforward network with the given parameters, but using only a number of data points.
This is useful for optimizers such as SGD, which require a separable objective function.
parameters | Matrix model parameters. |
begin | Index of the starting point to use for objective function evaluation. |
batchSize | Number of points to be passed at a time to use for objective function evaluation. |
deterministic | Whether or not to train or test the model. Note some layer act differently in training or testing mode. |
double Evaluate | ( | const arma::mat & | parameters, |
const size_t | begin, | ||
const size_t | batchSize | ||
) |
Evaluate the feedforward network with the given parameters, but using only a number of data points.
This is useful for optimizers such as SGD, which require a separable objective function. This just calls the overload of Evaluate() with deterministic = true.
parameters | Matrix model parameters. |
begin | Index of the starting point to use for objective function evaluation. |
batchSize | Number of points to be passed at a time to use for objective function evaluation. |
double EvaluateWithGradient | ( | const arma::mat & | parameters, |
GradType & | gradient | ||
) |
Evaluate the feedforward network with the given parameters.
This function is usually called by the optimizer to train the model. This just calls the overload of EvaluateWithGradient() with batchSize = 1.
parameters | Matrix model parameters. |
gradient | Matrix to output gradient into. |
double EvaluateWithGradient | ( | const arma::mat & | parameters, |
const size_t | begin, | ||
GradType & | gradient, | ||
const size_t | batchSize | ||
) |
Evaluate the feedforward network with the given parameters, but using only a number of data points.
This is useful for optimizers such as SGD, which require a separable objective function.
parameters | Matrix model parameters. |
begin | Index of the starting point to use for objective function evaluation. |
gradient | Matrix to output gradient into. |
batchSize | Number of points to be passed at a time to use for objective function evaluation. |
void Forward | ( | const PredictorsType & | inputs, |
ResponsesType & | results | ||
) |
Perform the forward pass of the data in real batch mode.
Forward and Backward should be used as a pair, and they are designed mainly for advanced users. User should try to use Predict and Train unless those two functions can't satisfy some special requirements.
inputs | The input data. |
results | The predicted results. |
Referenced by FFN< OutputLayerType, InitializationRuleType, CustomLayers >::Predictors().
void Forward | ( | const PredictorsType & | inputs, |
ResponsesType & | results, | ||
const size_t | begin, | ||
const size_t | end | ||
) |
Perform a partial forward pass of the data.
This function is meant for the cases when users require a forward pass only through certain layers and not the entire network.
inputs | The input data for the specified first layer. |
results | The predicted results from the specified last layer. |
begin | The index of the first layer. |
end | The index of the last layer. |
void Gradient | ( | const arma::mat & | parameters, |
const size_t | begin, | ||
arma::mat & | gradient, | ||
const size_t | batchSize | ||
) |
Evaluate the gradient of the feedforward network with the given parameters, and with respect to only a number of points in the dataset.
This is useful for optimizers such as SGD, which require a separable objective function.
parameters | Matrix of the model parameters to be optimized. |
begin | Index of the starting point to use for objective function gradient evaluation. |
gradient | Matrix to output gradient into. |
batchSize | Number of points to be processed as a batch for objective function gradient evaluation. |
Referenced by FFN< OutputLayerType, InitializationRuleType, CustomLayers >::Predictors().
|
inline |
Get the network model.
Definition at line 300 of file ffn.hpp.
Referenced by FFN< OutputLayerType, InitializationRuleType, CustomLayers >::Predictors().
|
inline |
Modify the network model.
Be careful! If you change the structure of the network or parameters for layers, its state may become invalid, so be sure to call ResetParameters() afterwards.
|
inline |
Copy/move assignment operator.
|
inline |
|
inline |
void Predict | ( | arma::mat | predictors, |
arma::mat & | results | ||
) |
Predict the responses to a given set of predictors.
The responses will reflect the output of the given output layer as returned by the output layer function.
If you want to pass in a parameter and discard the original parameter object, be sure to use std::move to avoid unnecessary copy.
predictors | Input predictors. |
results | Matrix to put output predictions of responses into. |
|
inline |
|
inline |
Modify the matrix of data points (predictors).
Definition at line 325 of file ffn.hpp.
References FFN< OutputLayerType, InitializationRuleType, CustomLayers >::Backward(), FFN< OutputLayerType, InitializationRuleType, CustomLayers >::Forward(), FFN< OutputLayerType, InitializationRuleType, CustomLayers >::Gradient(), FFN< OutputLayerType, InitializationRuleType, CustomLayers >::Model(), FFN< OutputLayerType, InitializationRuleType, CustomLayers >::ResetParameters(), and FFN< OutputLayerType, InitializationRuleType, CustomLayers >::serialize().
void ResetParameters | ( | ) |
Reset the module infomration (weights/parameters).
Referenced by FFN< OutputLayerType, InitializationRuleType, CustomLayers >::Predictors().
|
inline |
|
inline |
void serialize | ( | Archive & | ar, |
const uint32_t | |||
) |
Serialize the model.
Referenced by FFN< OutputLayerType, InitializationRuleType, CustomLayers >::Predictors().
void Shuffle | ( | ) |
Shuffle the order of function visitation.
This may be called by the optimizer.
double Train | ( | arma::mat | predictors, |
arma::mat | responses, | ||
OptimizerType & | optimizer, | ||
CallbackTypes &&... | callbacks | ||
) |
Train the feedforward network on the given input data using the given optimizer.
This will use the existing model parameters as a starting point for the optimization. If this is not what you want, then you should access the parameters vector directly with Parameters() and modify it as desired.
If you want to pass in a parameter and discard the original parameter object, be sure to use std::move to avoid unnecessary copy.
OptimizerType | Type of optimizer to use to train the model. |
CallbackTypes | Types of Callback Functions. |
predictors | Input training variables. |
responses | Outputs results from input training variables. |
optimizer | Instantiated optimizer used to train the model. |
callbacks | Callback function for ensmallen optimizer OptimizerType . See https://www.ensmallen.org/docs.html#callback-documentation. |
double Train | ( | arma::mat | predictors, |
arma::mat | responses, | ||
CallbackTypes &&... | callbacks | ||
) |
Train the feedforward network on the given input data.
By default, the RMSProp optimization algorithm is used, but others can be specified (such as ens::SGD).
This will use the existing model parameters as a starting point for the optimization. If this is not what you want, then you should access the parameters vector directly with Parameters() and modify it as desired.
If you want to pass in a parameter and discard the original parameter object, be sure to use std::move to avoid unnecessary copy.
OptimizerType | Type of optimizer to use to train the model. |
predictors | Input training variables. |
CallbackTypes | Types of Callback Functions. |
responses | Outputs results from input training variables. |
callbacks | Callback function for ensmallen optimizer OptimizerType . See https://www.ensmallen.org/docs.html#callback-documentation. |
std::enable_if< HasMaxIterations<OptimizerType, size_t&(OptimizerType::*)()>::value, void>::type WarnMessageMaxIterations | ( | OptimizerType & | optimizer, |
size_t | samples | ||
) | const |
Check if the optimizer has MaxIterations() parameter, if it does then check if it's value is less than the number of datapoints in the dataset.
OptimizerType | Type of optimizer to use to train the model. |
optimizer | optimizer used in the training process. |
samples | Number of datapoints in the dataset. |
std::enable_if< !HasMaxIterations<OptimizerType, size_t&(OptimizerType::*)()>::value, void>::type WarnMessageMaxIterations | ( | OptimizerType & | optimizer, |
size_t | samples | ||
) | const |
Check if the optimizer has MaxIterations() parameter, if it doesn't then simply return from the function.
OptimizerType | Type of optimizer to use to train the model. |
optimizer | optimizer used in the training process. |
samples | Number of datapoints in the dataset. |