Implementation of the Add module class. More...
Public Member Functions | |
Add (const size_t outSize=0) | |
Create the Add object using the specified number of output units. More... | |
template < typename eT > | |
void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More... | |
OutputDataType const & | Delta () const |
Get the delta. More... | |
OutputDataType & | Delta () |
Modify the delta. More... | |
template < typename eT > | |
void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
template < typename eT > | |
void | Gradient (const arma::Mat< eT > &, const arma::Mat< eT > &error, arma::Mat< eT > &gradient) |
Calculate the gradient using the output delta and the input activation. More... | |
OutputDataType const & | Gradient () const |
Get the gradient. More... | |
OutputDataType & | Gradient () |
Modify the gradient. More... | |
OutputDataType const & | OutputParameter () const |
Get the output parameter. More... | |
OutputDataType & | OutputParameter () |
Modify the output parameter. More... | |
size_t | OutputSize () const |
Get the output size. More... | |
OutputDataType const & | Parameters () const |
Get the parameters. More... | |
OutputDataType & | Parameters () |
Modify the parameters. More... | |
template < typename Archive > | |
void | serialize (Archive &ar, const uint32_t) |
Serialize the layer. More... | |
size_t | WeightSize () const |
Get the size of weights. More... | |
Implementation of the Add module class.
The Add module applies a bias term to the incoming data.
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
Add | ( | const size_t | outSize = 0 | ) |
Create the Add object using the specified number of output units.
outSize | The number of output units. |
void Backward | ( | const arma::Mat< eT > & | , |
const arma::Mat< eT > & | gy, | ||
arma::Mat< eT > & | g | ||
) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
* | (input) The propagated input activation. |
gy | The backpropagated error. |
g | The calculated gradient. |
void Forward | ( | const arma::Mat< eT > & | input, |
arma::Mat< eT > & | output | ||
) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
input | Input data used for evaluating the specified function. |
output | Resulting output activation. |
void Gradient | ( | const arma::Mat< eT > & | , |
const arma::Mat< eT > & | error, | ||
arma::Mat< eT > & | gradient | ||
) |
Calculate the gradient using the output delta and the input activation.
* | (input) The propagated input. |
error | The calculated error. |
gradient | The calculated gradient. |
|
inline |
|
inline |
|
inline |
|
inline |
void serialize | ( | Archive & | ar, |
const uint32_t | |||
) |
Serialize the layer.
Referenced by Add< InputDataType, OutputDataType >::WeightSize().
|
inline |
Get the size of weights.
Definition at line 104 of file add.hpp.
References Add< InputDataType, OutputDataType >::serialize().