Implementation of the Concat class. More...
Public Member Functions | |
Concat (const bool model=false, const bool run=true) | |
Create the Concat object using the specified parameters. More... | |
Concat (arma::Row< size_t > &inputSize, const size_t axis, const bool model=false, const bool run=true) | |
Create the Concat object using the specified parameters. More... | |
~Concat () | |
Destroy the layers held by the model. More... | |
template<class LayerType , class... Args> | |
void | Add (Args... args) |
void | Add (LayerTypes< CustomLayers... > layer) |
template < typename eT > | |
void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
Ordinary feed backward pass of a neural network, using 3rd-order tensors as input, calculating the function f(x) by propagating x backwards through f. More... | |
template < typename eT > | |
void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g, const size_t index) |
This is the overload of Backward() that runs only a specific layer with the given input. More... | |
size_t const & | ConcatAxis () const |
Get the axis of concatenation. More... | |
arma::mat const & | Delta () const |
Get the delta.e. More... | |
arma::mat & | Delta () |
Modify the delta. More... | |
template < typename eT > | |
void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
template < typename eT > | |
void | Gradient (const arma::Mat< eT > &, const arma::Mat< eT > &error, arma::Mat< eT > &) |
template < typename eT > | |
void | Gradient (const arma::Mat< eT > &input, const arma::Mat< eT > &error, arma::Mat< eT > &gradient, const size_t index) |
arma::mat const & | Gradient () const |
Get the gradient. More... | |
arma::mat & | Gradient () |
Modify the gradient. More... | |
arma::mat const & | InputParameter () const |
arma::mat & | InputParameter () |
Modify the input parameter. More... | |
std::vector< LayerTypes< CustomLayers... > > & | Model () |
Return the model modules. More... | |
arma::mat const & | OutputParameter () const |
Get the output parameter. More... | |
arma::mat & | OutputParameter () |
Modify the output parameter. More... | |
const arma::mat & | Parameters () const |
Return the initial point for the optimization. More... | |
arma::mat & | Parameters () |
Modify the initial point for the optimization. More... | |
bool | Run () const |
Get the value of run parameter. More... | |
bool & | Run () |
Modify the value of run parameter. More... | |
template < typename Archive > | |
void | serialize (Archive &ar, const uint32_t) |
Serialize the layer. More... | |
size_t | WeightSize () const |
Get the size of the weight matrix. More... | |
Implementation of the Concat class.
The Concat class works as a feed-forward fully connected network container which plugs various layers together.
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
CustomLayers | Additional custom layers if required. |
Definition at line 43 of file concat.hpp.
Concat | ( | const bool | model = false , |
const bool | run = true |
||
) |
Create the Concat object using the specified parameters.
model | Expose all network modules. |
run | Call the Forward/Backward method before the output is merged. |
Concat | ( | arma::Row< size_t > & | inputSize, |
const size_t | axis, | ||
const bool | model = false , |
||
const bool | run = true |
||
) |
~Concat | ( | ) |
Destroy the layers held by the model.
|
inline |
Definition at line 145 of file concat.hpp.
Referenced by DuelingDQN< OutputLayerType, InitType, CompleteNetworkType, FeatureNetworkType, AdvantageNetworkType, ValueNetworkType >::DuelingDQN().
|
inline |
Definition at line 152 of file concat.hpp.
void Backward | ( | const arma::Mat< eT > & | , |
const arma::Mat< eT > & | gy, | ||
arma::Mat< eT > & | g | ||
) |
Ordinary feed backward pass of a neural network, using 3rd-order tensors as input, calculating the function f(x) by propagating x backwards through f.
Using the results from the feed forward pass.
* | (input) The propagated input activation. |
gy | The backpropagated error. |
g | The calculated gradient. |
void Backward | ( | const arma::Mat< eT > & | , |
const arma::Mat< eT > & | gy, | ||
arma::Mat< eT > & | g, | ||
const size_t | index | ||
) |
This is the overload of Backward() that runs only a specific layer with the given input.
* | (input) The propagated input activation. |
gy | The backpropagated error. |
g | The calculated gradient. |
index | The index of the layer to run. |
|
inline |
Get the axis of concatenation.
Definition at line 195 of file concat.hpp.
|
inline |
Get the delta.e.
Definition at line 185 of file concat.hpp.
|
inline |
Modify the delta.
Definition at line 187 of file concat.hpp.
void Forward | ( | const arma::Mat< eT > & | input, |
arma::Mat< eT > & | output | ||
) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
input | Input data used for evaluating the specified function. |
output | Resulting output activation. |
void Gradient | ( | const arma::Mat< eT > & | , |
const arma::Mat< eT > & | error, | ||
arma::Mat< eT > & | |||
) |
void Gradient | ( | const arma::Mat< eT > & | input, |
const arma::Mat< eT > & | error, | ||
arma::Mat< eT > & | gradient, | ||
const size_t | index | ||
) |
|
inline |
Get the gradient.
Definition at line 190 of file concat.hpp.
|
inline |
Modify the gradient.
Definition at line 192 of file concat.hpp.
|
inline |
Definition at line 175 of file concat.hpp.
|
inline |
Modify the input parameter.
Definition at line 177 of file concat.hpp.
|
inline |
Return the model modules.
Definition at line 155 of file concat.hpp.
|
inline |
Get the output parameter.
Definition at line 180 of file concat.hpp.
|
inline |
Modify the output parameter.
Definition at line 182 of file concat.hpp.
|
inline |
Return the initial point for the optimization.
Definition at line 166 of file concat.hpp.
|
inline |
Modify the initial point for the optimization.
Definition at line 168 of file concat.hpp.
|
inline |
Get the value of run parameter.
Definition at line 171 of file concat.hpp.
|
inline |
Modify the value of run parameter.
Definition at line 173 of file concat.hpp.
void serialize | ( | Archive & | ar, |
const uint32_t | |||
) |
Serialize the layer.
Referenced by Concat< InputDataType, OutputDataType, CustomLayers >::WeightSize().
|
inline |
Get the size of the weight matrix.
Definition at line 198 of file concat.hpp.
References Concat< InputDataType, OutputDataType, CustomLayers >::serialize().