12 #ifndef MLPACK_METHODS_ANN_RNN_HPP 13 #define MLPACK_METHODS_ANN_RNN_HPP 29 #include <ensmallen.hpp> 41 typename OutputLayerType = NegativeLogLikelihood<>,
42 typename InitializationRuleType = RandomInitialization,
43 typename... CustomLayers
50 InitializationRuleType,
69 const bool single =
false,
70 OutputLayerType outputLayer = OutputLayerType(),
71 InitializationRuleType initializeRule = InitializationRuleType());
97 template<
typename OptimizerType>
98 typename std::enable_if<
99 HasMaxIterations<OptimizerType, size_t&(OptimizerType::*)()>
111 template<
typename OptimizerType>
112 typename std::enable_if<
113 !HasMaxIterations<OptimizerType, size_t&(OptimizerType::*)()>
144 template<
typename OptimizerType,
typename... CallbackTypes>
145 double Train(arma::cube predictors,
146 arma::cube responses,
147 OptimizerType& optimizer,
148 CallbackTypes&&... callbacks);
177 template<
typename OptimizerType = ens::StandardSGD,
typename... CallbackTypes>
178 double Train(arma::cube predictors,
179 arma::cube responses,
180 CallbackTypes&&... callbacks);
201 void Predict(arma::cube predictors,
203 const size_t batchSize = 256);
217 double Evaluate(
const arma::mat& parameters,
219 const size_t batchSize,
220 const bool deterministic);
233 double Evaluate(
const arma::mat& parameters,
235 const size_t batchSize);
248 template<
typename GradType>
252 const size_t batchSize);
267 void Gradient(
const arma::mat& parameters,
270 const size_t batchSize);
283 template <
class LayerType,
class... Args>
284 void Add(Args... args) { network.push_back(
new LayerType(args...)); }
302 const size_t&
Rho()
const {
return rho; }
304 size_t&
Rho() {
return rho; }
307 const arma::cube&
Responses()
const {
return responses; }
329 template<
typename Archive>
330 void serialize(Archive& ar,
const uint32_t );
340 template<
typename InputType>
341 void Forward(
const InputType& input);
358 template<
typename InputType>
359 void Gradient(
const InputType& input);
365 void ResetDeterministic();
370 void ResetGradients(arma::mat& gradient);
376 OutputLayerType outputLayer;
380 InitializationRuleType initializeRule;
398 std::vector<
LayerTypes<CustomLayers...> > network;
401 arma::cube predictors;
404 arma::cube responses;
422 std::vector<arma::mat> moduleOutputParameter;
440 arma::mat currentGradient;
444 typename OutputLayerType1,
445 typename MergeLayerType1,
446 typename MergeOutputType1,
447 typename InitializationRuleType1,
448 typename... CustomLayers1
457 #include "rnn_impl.hpp" DeleteVisitor executes the destructor of the instantiated object.
RNN(const size_t rho, const bool single=false, OutputLayerType outputLayer=OutputLayerType(), InitializationRuleType initializeRule=InitializationRuleType())
Create the RNN object.
void ResetParameters()
Reset the module information (weights/parameters).
void serialize(Archive &ar, const uint32_t)
Serialize the model.
double Train(arma::cube predictors, arma::cube responses, OptimizerType &optimizer, CallbackTypes &&... callbacks)
Train the recurrent neural network on the given input data using the given optimizer.
Linear algebra utility functions, generally performed on matrices or vectors.
void Predict(arma::cube predictors, arma::cube &results, const size_t batchSize=256)
Predict the responses to a given set of predictors.
This visitor is to support copy constructor for neural network module.
The core includes that mlpack expects; standard C++ includes and Armadillo.
void Reset()
Reset the state of the network.
size_t & Rho()
Modify the maximum length of backpropagation through time.
WeightSizeVisitor returns the number of weights of the given module.
const arma::mat & Parameters() const
Return the initial point for the optimization.
arma::mat & Parameters()
Modify the initial point for the optimization.
double Evaluate(const arma::mat ¶meters, const size_t begin, const size_t batchSize, const bool deterministic)
Evaluate the recurrent neural network with the given parameters.
Implementation of a standard recurrent neural network container.
RNN & operator=(const RNN &)
Copy assignment operator.
arma::cube & Predictors()
Modify the matrix of data points (predictors).
ResetVisitor executes the Reset() function.
OutputParameterVisitor exposes the output parameter of the given module.
const arma::cube & Predictors() const
Get the matrix of data points (predictors).
size_t NumFunctions() const
Return the number of separable functions (the number of predictor points).
void Gradient(const arma::mat ¶meters, const size_t begin, arma::mat &gradient, const size_t batchSize)
Evaluate the gradient of the recurrent neural network with the given parameters, and with respect to ...
Implementation of a standard bidirectional recurrent neural network container.
std::enable_if< HasMaxIterations< OptimizerType, size_t &(OptimizerType::*)()>::value, void >::type WarnMessageMaxIterations(OptimizerType &optimizer, size_t samples) const
Check if the optimizer has MaxIterations() parameter, if it does then check if it's value is less tha...
double EvaluateWithGradient(const arma::mat ¶meters, const size_t begin, GradType &gradient, const size_t batchSize)
Evaluate the recurrent neural network with the given parameters.
DeltaVisitor exposes the delta parameter of the given module.
const size_t & Rho() const
Return the maximum length of backpropagation through time.
void Add(LayerTypes< CustomLayers... > layer)
arma::cube & Responses()
Modify the matrix of responses to the input data points.
boost::variant< AdaptiveMaxPooling< arma::mat, arma::mat > *, AdaptiveMeanPooling< arma::mat, arma::mat > *, Add< arma::mat, arma::mat > *, AddMerge< arma::mat, arma::mat > *, AlphaDropout< arma::mat, arma::mat > *, AtrousConvolution< NaiveConvolution< ValidConvolution >, NaiveConvolution< FullConvolution >, NaiveConvolution< ValidConvolution >, arma::mat, arma::mat > *, BaseLayer< LogisticFunction, arma::mat, arma::mat > *, BaseLayer< IdentityFunction, arma::mat, arma::mat > *, BaseLayer< TanhFunction, arma::mat, arma::mat > *, BaseLayer< SoftplusFunction, arma::mat, arma::mat > *, BaseLayer< RectifierFunction, arma::mat, arma::mat > *, BatchNorm< arma::mat, arma::mat > *, BilinearInterpolation< arma::mat, arma::mat > *, CELU< arma::mat, arma::mat > *, Concat< arma::mat, arma::mat > *, Concatenate< arma::mat, arma::mat > *, ConcatPerformance< NegativeLogLikelihood< arma::mat, arma::mat >, arma::mat, arma::mat > *, Constant< arma::mat, arma::mat > *, Convolution< NaiveConvolution< ValidConvolution >, NaiveConvolution< FullConvolution >, NaiveConvolution< ValidConvolution >, arma::mat, arma::mat > *, CReLU< arma::mat, arma::mat > *, DropConnect< arma::mat, arma::mat > *, Dropout< arma::mat, arma::mat > *, ELU< arma::mat, arma::mat > *, FastLSTM< arma::mat, arma::mat > *, GRU< arma::mat, arma::mat > *, HardTanH< arma::mat, arma::mat > *, Join< arma::mat, arma::mat > *, LayerNorm< arma::mat, arma::mat > *, LeakyReLU< arma::mat, arma::mat > *, Linear< arma::mat, arma::mat, NoRegularizer > *, LinearNoBias< arma::mat, arma::mat, NoRegularizer > *, LogSoftMax< arma::mat, arma::mat > *, Lookup< arma::mat, arma::mat > *, LSTM< arma::mat, arma::mat > *, MaxPooling< arma::mat, arma::mat > *, MeanPooling< arma::mat, arma::mat > *, MiniBatchDiscrimination< arma::mat, arma::mat > *, MultiplyConstant< arma::mat, arma::mat > *, MultiplyMerge< arma::mat, arma::mat > *, NegativeLogLikelihood< arma::mat, arma::mat > *, NoisyLinear< arma::mat, arma::mat > *, Padding< arma::mat, arma::mat > *, PReLU< arma::mat, arma::mat > *, Sequential< arma::mat, arma::mat, false > *, Sequential< arma::mat, arma::mat, true > *, Softmax< arma::mat, arma::mat > *, TransposedConvolution< NaiveConvolution< ValidConvolution >, NaiveConvolution< ValidConvolution >, NaiveConvolution< ValidConvolution >, arma::mat, arma::mat > *, WeightNorm< arma::mat, arma::mat > *, MoreTypes, CustomLayers *... > LayerTypes
~RNN()
Destructor to release allocated memory.
const arma::cube & Responses() const
Get the matrix of responses to the input data points.
void Shuffle()
Shuffle the order of function visitation.