13 #ifndef MLPACK_METHODS_ANN_LAYER_LINEAR_HPP    14 #define MLPACK_METHODS_ANN_LAYER_LINEAR_HPP    34     typename InputDataType = arma::mat,
    35     typename OutputDataType = arma::mat,
    36     typename RegularizerType = NoRegularizer
    51   Linear(
const size_t inSize,
    53          RegularizerType regularizer = RegularizerType());
    80   void Forward(
const arma::Mat<eT>& input, arma::Mat<eT>& output);
    93                 const arma::Mat<eT>& gy,
   103   template<
typename eT>
   104   void Gradient(
const arma::Mat<eT>& input,
   105                 const arma::Mat<eT>& error,
   106                 arma::Mat<eT>& gradient);
   124   OutputDataType 
const& 
Delta()
 const { 
return delta; }
   126   OutputDataType& 
Delta() { 
return delta; }
   135   OutputDataType 
const& 
Gradient()
 const { 
return gradient; }
   140   OutputDataType 
const& 
Weight()
 const { 
return weight; }
   142   OutputDataType& 
Weight() { 
return weight; }
   145   OutputDataType 
const& 
Bias()
 const { 
return bias; }
   147   OutputDataType& 
Bias() { 
return bias; }
   152     return (inSize * outSize) + outSize;
   164   template<
typename Archive>
   165   void serialize(Archive& ar, 
const uint32_t );
   175   OutputDataType weights;
   178   OutputDataType weight;
   184   OutputDataType delta;
   187   OutputDataType gradient;
   190   InputDataType inputParameter;
   193   OutputDataType outputParameter;
   196   RegularizerType regularizer;
   203 #include "linear_impl.hpp" OutputDataType const  & Delta() const
Get the delta. 
 
size_t WeightSize() const
Get the size of the weights. 
 
Linear algebra utility functions, generally performed on matrices or vectors. 
 
OutputDataType & Parameters()
Modify the parameters. 
 
void Backward(const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g)
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backw...
 
size_t OutputSize() const
Get the output size. 
 
The core includes that mlpack expects; standard C++ includes and Armadillo. 
 
OutputDataType & Bias()
Modify the bias weights of the layer. 
 
Linear & operator=(const Linear &layer)
Copy assignment operator. 
 
size_t InputShape() const
Get the shape of the input. 
 
OutputDataType & Gradient()
Modify the gradient. 
 
void Forward(const arma::Mat< eT > &input, arma::Mat< eT > &output)
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activ...
 
OutputDataType const  & Weight() const
Get the weight of the layer. 
 
void serialize(Archive &ar, const uint32_t)
Serialize the layer. 
 
OutputDataType const  & Gradient() const
Get the gradient. 
 
OutputDataType const  & Bias() const
Get the bias of the layer. 
 
OutputDataType const  & Parameters() const
Get the parameters. 
 
InputDataType & InputParameter()
Modify the input parameter. 
 
OutputDataType const  & OutputParameter() const
Get the output parameter. 
 
size_t InputSize() const
Get the input size. 
 
OutputDataType & OutputParameter()
Modify the output parameter. 
 
OutputDataType & Weight()
Modify the weight of the layer. 
 
OutputDataType & Delta()
Modify the delta. 
 
Linear()
Create the Linear object. 
 
InputDataType const  & InputParameter() const
Get the input parameter.