Implementation of the Linear layer class. More...
Public Member Functions | |
| Linear () | |
| Create the Linear object. More... | |
| Linear (const size_t inSize, const size_t outSize, RegularizerType regularizer=RegularizerType()) | |
| Create the Linear layer object using the specified number of units. More... | |
| Linear (const Linear &layer) | |
| Copy constructor. More... | |
| Linear (Linear &&) | |
| Move constructor. More... | |
template < typename eT > | |
| void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
| Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More... | |
| OutputDataType const & | Bias () const |
| Get the bias of the layer. More... | |
| OutputDataType & | Bias () |
| Modify the bias weights of the layer. More... | |
| OutputDataType const & | Delta () const |
| Get the delta. More... | |
| OutputDataType & | Delta () |
| Modify the delta. More... | |
template < typename eT > | |
| void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
| Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
template < typename eT > | |
| void | Gradient (const arma::Mat< eT > &input, const arma::Mat< eT > &error, arma::Mat< eT > &gradient) |
| OutputDataType const & | Gradient () const |
| Get the gradient. More... | |
| OutputDataType & | Gradient () |
| Modify the gradient. More... | |
| InputDataType const & | InputParameter () const |
| Get the input parameter. More... | |
| InputDataType & | InputParameter () |
| Modify the input parameter. More... | |
| size_t | InputShape () const |
| Get the shape of the input. More... | |
| size_t | InputSize () const |
| Get the input size. More... | |
| Linear & | operator= (const Linear &layer) |
| Copy assignment operator. More... | |
| Linear & | operator= (Linear &&layer) |
| Move assignment operator. More... | |
| OutputDataType const & | OutputParameter () const |
| Get the output parameter. More... | |
| OutputDataType & | OutputParameter () |
| Modify the output parameter. More... | |
| size_t | OutputSize () const |
| Get the output size. More... | |
| OutputDataType const & | Parameters () const |
| Get the parameters. More... | |
| OutputDataType & | Parameters () |
| Modify the parameters. More... | |
| void | Reset () |
template < typename Archive > | |
| void | serialize (Archive &ar, const uint32_t) |
| Serialize the layer. More... | |
| OutputDataType const & | Weight () const |
| Get the weight of the layer. More... | |
| OutputDataType & | Weight () |
| Modify the weight of the layer. More... | |
| size_t | WeightSize () const |
| Get the size of the weights. More... | |
Implementation of the Linear layer class.
The Linear class represents a single layer of a neural network.
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
Definition at line 95 of file layer_types.hpp.
| Linear | ( | const size_t | inSize, |
| const size_t | outSize, | ||
| RegularizerType | regularizer = RegularizerType() |
||
| ) |
Create the Linear layer object using the specified number of units.
| inSize | The number of input units. |
| outSize | The number of output units. |
| regularizer | The regularizer to use, optional. |
| void Backward | ( | const arma::Mat< eT > & | , |
| const arma::Mat< eT > & | gy, | ||
| arma::Mat< eT > & | g | ||
| ) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
| * | (input) The propagated input activation. |
| gy | The backpropagated error. |
| g | The calculated gradient. |
|
inline |
Get the bias of the layer.
Definition at line 145 of file linear.hpp.
|
inline |
Modify the bias weights of the layer.
Definition at line 147 of file linear.hpp.
|
inline |
Get the delta.
Definition at line 124 of file linear.hpp.
|
inline |
Modify the delta.
Definition at line 126 of file linear.hpp.
| void Forward | ( | const arma::Mat< eT > & | input, |
| arma::Mat< eT > & | output | ||
| ) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
| input | Input data used for evaluating the specified function. |
| output | Resulting output activation. |
| void Gradient | ( | const arma::Mat< eT > & | input, |
| const arma::Mat< eT > & | error, | ||
| arma::Mat< eT > & | gradient | ||
| ) |
|
inline |
Get the gradient.
Definition at line 135 of file linear.hpp.
|
inline |
Modify the gradient.
Definition at line 137 of file linear.hpp.
|
inline |
Get the input parameter.
Definition at line 114 of file linear.hpp.
|
inline |
Modify the input parameter.
Definition at line 116 of file linear.hpp.
|
inline |
Get the shape of the input.
Definition at line 156 of file linear.hpp.
References Linear< InputDataType, OutputDataType, RegularizerType >::serialize().
|
inline |
Get the input size.
Definition at line 129 of file linear.hpp.
Copy assignment operator.
Move assignment operator.
|
inline |
Get the output parameter.
Definition at line 119 of file linear.hpp.
|
inline |
Modify the output parameter.
Definition at line 121 of file linear.hpp.
|
inline |
Get the output size.
Definition at line 132 of file linear.hpp.
|
inline |
Get the parameters.
Definition at line 109 of file linear.hpp.
|
inline |
Modify the parameters.
Definition at line 111 of file linear.hpp.
| void Reset | ( | ) |
| void serialize | ( | Archive & | ar, |
| const uint32_t | |||
| ) |
Serialize the layer.
Referenced by Linear< InputDataType, OutputDataType, RegularizerType >::InputShape().
|
inline |
Get the weight of the layer.
Definition at line 140 of file linear.hpp.
|
inline |
Modify the weight of the layer.
Definition at line 142 of file linear.hpp.
|
inline |
Get the size of the weights.
Definition at line 150 of file linear.hpp.