24 #ifndef MLPACK_METHODS_LARS_LARS_HPP 25 #define MLPACK_METHODS_LARS_LARS_HPP 30 namespace regression {
102 LARS(
const bool useCholesky =
false,
103 const double lambda1 = 0.0,
104 const double lambda2 = 0.0,
105 const double tolerance = 1e-16);
119 LARS(
const bool useCholesky,
120 const arma::mat& gramMatrix,
121 const double lambda1 = 0.0,
122 const double lambda2 = 0.0,
123 const double tolerance = 1e-16);
140 LARS(
const arma::mat& data,
141 const arma::rowvec& responses,
142 const bool transposeData =
true,
143 const bool useCholesky =
false,
144 const double lambda1 = 0.0,
145 const double lambda2 = 0.0,
146 const double tolerance = 1e-16);
164 LARS(
const arma::mat& data,
165 const arma::rowvec& responses,
166 const bool transposeData,
167 const bool useCholesky,
168 const arma::mat& gramMatrix,
169 const double lambda1 = 0.0,
170 const double lambda2 = 0.0,
171 const double tolerance = 1e-16);
216 double Train(
const arma::mat& data,
217 const arma::rowvec& responses,
219 const bool transposeData =
true);
235 double Train(
const arma::mat& data,
236 const arma::rowvec& responses,
237 const bool transposeData =
true);
248 void Predict(
const arma::mat& points,
249 arma::rowvec& predictions,
250 const bool rowMajor =
false)
const;
273 const std::vector<size_t>&
ActiveSet()
const {
return activeSet; }
277 const std::vector<arma::vec>&
BetaPath()
const {
return betaPath; }
280 const arma::vec&
Beta()
const {
return betaPath.back(); }
284 const std::vector<double>&
LambdaPath()
const {
return lambdaPath; }
292 template<
typename Archive>
293 void serialize(Archive& ar,
const uint32_t );
308 const arma::rowvec& y,
309 const bool rowMajor =
false);
313 arma::mat matGramInternal;
316 const arma::mat* matGram;
319 arma::mat matUtriCholFactor;
338 std::vector<arma::vec> betaPath;
341 std::vector<double> lambdaPath;
344 std::vector<size_t> activeSet;
347 std::vector<bool> isActive;
352 std::vector<size_t> ignoreSet;
355 std::vector<bool> isIgnored;
362 void Deactivate(
const size_t activeVarInd);
369 void Activate(
const size_t varInd);
376 void Ignore(
const size_t varInd);
379 void ComputeYHatDirection(
const arma::mat& matX,
380 const arma::vec& betaDirection,
381 arma::vec& yHatDirection);
384 void InterpolateBeta();
386 void CholeskyInsert(
const arma::vec& newX,
const arma::mat& X);
388 void CholeskyInsert(
double sqNormNewX,
const arma::vec& newGramCol);
390 void GivensRotate(
const arma::vec::fixed<2>& x,
391 arma::vec::fixed<2>& rotatedX,
394 void CholeskyDelete(
const size_t colToKill);
401 #include "lars_impl.hpp" double & Lambda1()
Modify the L1 regularization coefficient.
bool & UseCholesky()
Modify whether to use the Cholesky decomposition.
Linear algebra utility functions, generally performed on matrices or vectors.
double Lambda1() const
Get the L1 regularization coefficient.
void Predict(const arma::mat &points, arma::rowvec &predictions, const bool rowMajor=false) const
Predict y_i for each data point in the given data matrix using the currently-trained LARS model...
The core includes that mlpack expects; standard C++ includes and Armadillo.
const std::vector< arma::vec > & BetaPath() const
Access the set of coefficients after each iteration; the solution is the last element.
double Train(const arma::mat &data, const arma::rowvec &responses, arma::vec &beta, const bool transposeData=true)
Run LARS.
double Tolerance() const
Get the tolerance for maximum correlation during training.
LARS & operator=(const LARS &other)
Copy the given LARS object.
LARS(const bool useCholesky=false, const double lambda1=0.0, const double lambda2=0.0, const double tolerance=1e-16)
Set the parameters to LARS.
An implementation of LARS, a stage-wise homotopy-based algorithm for l1-regularized linear regression...
double & Lambda2()
Modify the L2 regularization coefficient.
const arma::mat & MatUtriCholFactor() const
Access the upper triangular cholesky factor.
double ComputeError(const arma::mat &matX, const arma::rowvec &y, const bool rowMajor=false)
Compute cost error of the given data matrix using the currently-trained LARS model.
const std::vector< double > & LambdaPath() const
Access the set of values for lambda1 after each iteration; the solution is the last element...
const std::vector< size_t > & ActiveSet() const
Access the set of active dimensions.
double Lambda2() const
Get the L2 regularization coefficient.
void serialize(Archive &ar, const uint32_t)
Serialize the LARS model.
bool UseCholesky() const
Get whether to use the Cholesky decomposition.
const arma::vec & Beta() const
Access the solution coefficients.
double & Tolerance()
Modify the tolerance for maximum correlation during training.