Implementation of the Softmax layer. More...
Public Member Functions | |
| Softmax () | |
| Create the Softmax object. More... | |
template < typename eT > | |
| void | Backward (const arma::Mat< eT > &input, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
| Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f. More... | |
| InputDataType & | Delta () const |
| Get the delta. More... | |
| InputDataType & | Delta () |
| Modify the delta. More... | |
template < typename InputType , typename OutputType > | |
| void | Forward (const InputType &input, OutputType &output) |
| Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
| OutputDataType & | OutputParameter () const |
| Get the output parameter. More... | |
| OutputDataType & | OutputParameter () |
| Modify the output parameter. More... | |
template < typename Archive > | |
| void | serialize (Archive &, const uint32_t) |
| Serialize the layer. More... | |
| size_t | WeightSize () const |
| Get the size of the weights. More... | |
Implementation of the Softmax layer.
The softmax function takes as input a vector of K real numbers, and normalizes it into a probability distribution consisting of K probabilities proportional to the exponentials of the input numbers. It should be used for inference only and not with NLL loss (use LogSoftMax instead).
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
Definition at line 38 of file softmax.hpp.
| void Backward | ( | const arma::Mat< eT > & | input, |
| const arma::Mat< eT > & | gy, | ||
| arma::Mat< eT > & | g | ||
| ) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f.
Using the results from the feed forward pass.
| input | The propagated input activation. |
| gy | The backpropagated error. |
| g | The calculated gradient. |
|
inline |
Get the delta.
Definition at line 79 of file softmax.hpp.
|
inline |
Modify the delta.
Definition at line 81 of file softmax.hpp.
References Softmax< InputDataType, OutputDataType >::serialize().
| void Forward | ( | const InputType & | input, |
| OutputType & | output | ||
| ) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
| input | Input data used for evaluating the specified function. |
| output | Resulting output activation. |
|
inline |
Get the output parameter.
Definition at line 71 of file softmax.hpp.
|
inline |
Modify the output parameter.
Definition at line 73 of file softmax.hpp.
| void serialize | ( | Archive & | , |
| const uint32_t | |||
| ) |
Serialize the layer.
Referenced by Softmax< InputDataType, OutputDataType >::Delta().
|
inline |
Get the size of the weights.
Definition at line 76 of file softmax.hpp.