Implementation of the log softmax layer. More...
Public Member Functions | |
LogSoftMax () | |
Create the LogSoftmax object. More... | |
template < typename eT > | |
void | Backward (const arma::Mat< eT > &input, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More... | |
InputDataType & | Delta () const |
Get the delta. More... | |
InputDataType & | Delta () |
Modify the delta. More... | |
template < typename InputType , typename OutputType > | |
void | Forward (const InputType &input, OutputType &output) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
OutputDataType & | OutputParameter () const |
Get the output parameter. More... | |
OutputDataType & | OutputParameter () |
Modify the output parameter. More... | |
template < typename Archive > | |
void | serialize (Archive &, const uint32_t) |
Serialize the layer. More... | |
Implementation of the log softmax layer.
The log softmax loss layer computes the multinomial logistic loss of the softmax of its inputs. This layer is meant to be used in combination with the negative log likelihood layer (NegativeLogLikelihoodLayer), which expects that the input contains log-probabilities for each class.
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
Definition at line 36 of file log_softmax.hpp.
LogSoftMax | ( | ) |
Create the LogSoftmax object.
void Backward | ( | const arma::Mat< eT > & | input, |
const arma::Mat< eT > & | gy, | ||
arma::Mat< eT > & | g | ||
) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
input | The propagated input activation. |
gy | The backpropagated error. |
g | The calculated gradient. |
|
inline |
Get the delta.
Definition at line 74 of file log_softmax.hpp.
|
inline |
Modify the delta.
Definition at line 76 of file log_softmax.hpp.
References LogSoftMax< InputDataType, OutputDataType >::serialize().
void Forward | ( | const InputType & | input, |
OutputType & | output | ||
) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
input | Input data used for evaluating the specified function. |
output | Resulting output activation. |
|
inline |
Get the output parameter.
Definition at line 69 of file log_softmax.hpp.
|
inline |
Modify the output parameter.
Definition at line 71 of file log_softmax.hpp.
void serialize | ( | Archive & | , |
const uint32_t | |||
) |
Serialize the layer.
Referenced by LogSoftMax< InputDataType, OutputDataType >::Delta().