|
| | GRU () |
| | Create the GRU object. More...
|
| |
| | GRU (const size_t inSize, const size_t outSize, const size_t rho=std::numeric_limits< size_t >::max()) |
| | Create the GRU layer object using the specified parameters. More...
|
| |
|
| void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
| | Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More...
|
| |
| OutputDataType const & | Delta () const |
| | Get the delta. More...
|
| |
| OutputDataType & | Delta () |
| | Modify the delta. More...
|
| |
| bool | Deterministic () const |
| | The value of the deterministic parameter. More...
|
| |
| bool & | Deterministic () |
| | Modify the value of the deterministic parameter. More...
|
| |
|
| void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
| | Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...
|
| |
|
| void | Gradient (const arma::Mat< eT > &input, const arma::Mat< eT > &, arma::Mat< eT > &) |
| |
| OutputDataType const & | Gradient () const |
| | Get the gradient. More...
|
| |
| OutputDataType & | Gradient () |
| | Modify the gradient. More...
|
| |
| size_t | InputShape () const |
| | Get the shape of the input. More...
|
| |
| size_t | InSize () const |
| | Get the number of input units. More...
|
| |
| std::vector< LayerTypes<> > & | Model () |
| | Get the model modules. More...
|
| |
| OutputDataType const & | OutputParameter () const |
| | Get the output parameter. More...
|
| |
| OutputDataType & | OutputParameter () |
| | Modify the output parameter. More...
|
| |
| size_t | OutSize () const |
| | Get the number of output units. More...
|
| |
| OutputDataType const & | Parameters () const |
| | Get the parameters. More...
|
| |
| OutputDataType & | Parameters () |
| | Modify the parameters. More...
|
| |
| void | ResetCell (const size_t size) |
| |
| size_t | Rho () const |
| | Get the maximum number of steps to backpropagate through time (BPTT). More...
|
| |
| size_t & | Rho () |
| | Modify the maximum number of steps to backpropagate through time (BPTT). More...
|
| |
|
| void | serialize (Archive &ar, const uint32_t) |
| | Serialize the layer. More...
|
| |
class mlpack::ann::GRU< InputDataType, OutputDataType >
An implementation of a gru network layer.
This cell can be used in RNN networks.
- Template Parameters
-
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
Definition at line 58 of file gru.hpp.