13 #ifndef MLPACK_METHODS_ANN_LAYER_TRANSPOSED_CONVOLUTION_HPP    14 #define MLPACK_METHODS_ANN_LAYER_TRANSPOSED_CONVOLUTION_HPP    43     typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>,
    44     typename BackwardConvolutionRule = NaiveConvolution<ValidConvolution>,
    45     typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>,
    46     typename InputDataType = arma::mat,
    47     typename OutputDataType = arma::mat
    49 class TransposedConvolution
    81                         const size_t kernelWidth,
    82                         const size_t kernelHeight,
    83                         const size_t strideWidth = 1,
    84                         const size_t strideHeight = 1,
    85                         const size_t padW = 0,
    86                         const size_t padH = 0,
    87                         const size_t inputWidth = 0,
    88                         const size_t inputHeight = 0,
    89                         const size_t outputWidth = 0,
    90                         const size_t outputHeight = 0,
    91                         const std::string& paddingType = 
"None");
   122                         const size_t outSize,
   123                         const size_t kernelWidth,
   124                         const size_t kernelHeight,
   125                         const size_t strideWidth,
   126                         const size_t strideHeight,
   127                         const std::tuple<size_t, size_t>& padW,
   128                         const std::tuple<size_t, size_t>& padH,
   129                         const size_t inputWidth = 0,
   130                         const size_t inputHeight = 0,
   131                         const size_t outputWidth = 0,
   132                         const size_t outputHeight = 0,
   133                         const std::string& paddingType = 
"None");
   147   template<
typename eT>
   148   void Forward(
const arma::Mat<eT>& input, arma::Mat<eT>& output);
   159   template<
typename eT>
   160   void Backward(
const arma::Mat<eT>& ,
   161                 const arma::Mat<eT>& gy,
   171   template<
typename eT>
   172   void Gradient(
const arma::Mat<eT>& ,
   173                 const arma::Mat<eT>& error,
   174                 arma::Mat<eT>& gradient);
   182   arma::cube 
const& 
Weight()
 const { 
return weight; }
   187   arma::mat 
const& 
Bias()
 const { 
return bias; }
   189   arma::mat& 
Bias() { 
return bias; }
   202   OutputDataType 
const& 
Delta()
 const { 
return delta; }
   204   OutputDataType& 
Delta() { 
return delta; }
   207   OutputDataType 
const& 
Gradient()
 const { 
return gradient; }
   280     return inputHeight * inputWidth * inSize;
   286     return (outSize * inSize * kernelWidth * kernelHeight) + outSize;
   291   template<
typename Archive>
   292   void serialize(Archive& ar, 
const uint32_t );
   301   template<
typename eT>
   302   void Rotate180(
const arma::Cube<eT>& input, arma::Cube<eT>& output)
   304     output = arma::Cube<eT>(input.n_rows, input.n_cols, input.n_slices);
   307     for (
size_t s = 0; s < output.n_slices; s++)
   308       output.slice(s) = arma::fliplr(arma::flipud(input.slice(s)));
   314   void InitializeSamePadding();
   322   template<
typename eT>
   323   void Rotate180(
const arma::Mat<eT>& input, arma::Mat<eT>& output)
   326     output = arma::fliplr(arma::flipud(input));
   339   template<
typename eT>
   340   void InsertZeros(
const arma::Mat<eT>& input,
   341                    const size_t strideWidth,
   342                    const size_t strideHeight,
   343                    arma::Mat<eT>& output)
   345     if (output.n_rows != input.n_rows * strideWidth - strideWidth + 1 ||
   346         output.n_cols != input.n_cols * strideHeight - strideHeight + 1)
   348       output = arma::zeros(input.n_rows * strideWidth - strideWidth + 1,
   349           input.n_cols * strideHeight - strideHeight + 1);
   352     for (
size_t i = 0; i < output.n_rows; i += strideHeight)
   354       for (
size_t j = 0; j < output.n_cols; j += strideWidth)
   358         output(i, j) = input(i / strideHeight, j / strideWidth);
   372   template<
typename eT>
   373   void InsertZeros(
const arma::Cube<eT>& input,
   374                    const size_t strideWidth,
   375                    const size_t strideHeight,
   376                    arma::Cube<eT>& output)
   378     output = arma::zeros(input.n_rows * strideWidth - strideWidth + 1,
   379         input.n_cols * strideHeight - strideHeight + 1, input.n_slices);
   381     for (
size_t i = 0; i < input.n_slices; ++i)
   383       InsertZeros<eT>(input.slice(i), strideWidth, strideHeight,
   428   OutputDataType weights;
   449   arma::cube outputTemp;
   452   arma::cube inputPaddedTemp;
   455   arma::cube inputExpandedTemp;
   461   arma::cube gradientTemp;
   470   OutputDataType delta;
   473   OutputDataType gradient;
   476   InputDataType inputParameter;
   479   OutputDataType outputParameter;
   486 #include "transposed_convolution_impl.hpp" arma::mat & Bias()
Modify the bias of the layer. 
 
size_t InputHeight() const
Get the input height. 
 
size_t & PadWLeft()
Modify the left padding width. 
 
OutputDataType const  & Gradient() const
Get the gradient. 
 
OutputDataType & Parameters()
Modify the parameters. 
 
Linear algebra utility functions, generally performed on matrices or vectors. 
 
Implementation of the Padding module class. 
 
size_t & StrideHeight()
Modify the stride height. 
 
size_t WeightSize() const
Get the size of the weight matrix. 
 
OutputDataType & Delta()
Modify the delta. 
 
The core includes that mlpack expects; standard C++ includes and Armadillo. 
 
size_t OutputHeight() const
Get the output height. 
 
size_t & InputHeight()
Modify the input height. 
 
void serialize(Archive &ar, const uint32_t)
Serialize the layer. 
 
size_t & KernelWidth()
Modify the kernel width. 
 
size_t & PadHTop()
Modify the top padding height. 
 
size_t & PadWRight()
Modify the right padding width. 
 
size_t PadWLeft() const
Get the left padding width. 
 
OutputDataType const  & OutputParameter() const
Get the output parameter. 
 
size_t PadHTop() const
Get the top padding height. 
 
OutputDataType const  & Parameters() const
Get the parameters. 
 
arma::cube & Weight()
Modify the weight of the layer. 
 
arma::mat const  & Bias() const
Get the bias of the layer. 
 
size_t & StrideWidth()
Modify the stride width. 
 
TransposedConvolution()
Create the Transposed Convolution object. 
 
size_t KernelHeight() const
Get the kernel height. 
 
arma::cube const  & Weight() const
Get the weight of the layer. 
 
OutputDataType & Gradient()
Modify the gradient. 
 
size_t InputShape() const
Get the shape of the input. 
 
size_t & KernelHeight()
Modify the kernel height. 
 
InputDataType const  & InputParameter() const
Get the input parameter. 
 
OutputDataType const  & Delta() const
Get the delta. 
 
size_t & PadHBottom()
Modify the bottom padding height. 
 
size_t & OutputWidth()
Modify the output width. 
 
size_t OutputSize() const
Get the output size. 
 
size_t & InputWidth()
Modify input the width. 
 
size_t KernelWidth() const
Get the kernel width. 
 
size_t InputSize() const
Get the input size. 
 
size_t PadHBottom() const
Get the bottom padding height. 
 
size_t StrideWidth() const
Get the stride width. 
 
OutputDataType & OutputParameter()
Modify the output parameter. 
 
InputDataType & InputParameter()
Modify the input parameter. 
 
size_t OutputWidth() const
Get the output width. 
 
void Forward(const arma::Mat< eT > &input, arma::Mat< eT > &output)
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activ...
 
size_t InputWidth() const
Get the input width. 
 
size_t PadWRight() const
Get the right padding width. 
 
size_t StrideHeight() const
Get the stride height. 
 
size_t & OutputHeight()
Modify the output height. 
 
void Backward(const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g)
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backw...