softmax_regression.hpp
Go to the documentation of this file.
1 
12 #ifndef MLPACK_METHODS_SOFTMAX_REGRESSION_SOFTMAX_REGRESSION_HPP
13 #define MLPACK_METHODS_SOFTMAX_REGRESSION_SOFTMAX_REGRESSION_HPP
14 
15 #include <mlpack/prereqs.hpp>
16 #include <ensmallen.hpp>
17 
19 
20 namespace mlpack {
21 namespace regression {
22 
60 {
61  public:
71  SoftmaxRegression(const size_t inputSize = 0,
72  const size_t numClasses = 0,
73  const bool fitIntercept = false);
88  template<typename OptimizerType = ens::L_BFGS>
89  SoftmaxRegression(const arma::mat& data,
90  const arma::Row<size_t>& labels,
91  const size_t numClasses,
92  const double lambda = 0.0001,
93  const bool fitIntercept = false,
94  OptimizerType optimizer = OptimizerType());
112  template<typename OptimizerType, typename... CallbackTypes>
113  SoftmaxRegression(const arma::mat& data,
114  const arma::Row<size_t>& labels,
115  const size_t numClasses,
116  const double lambda,
117  const bool fitIntercept,
118  OptimizerType optimizer,
119  CallbackTypes&&... callbacks);
128  void Classify(const arma::mat& dataset, arma::Row<size_t>& labels) const;
136  template<typename VecType>
137  size_t Classify(const VecType& point) const;
138 
150  void Classify(const arma::mat& dataset,
151  arma::Row<size_t>& labels,
152  arma::mat& probabilities) const;
153 
160  void Classify(const arma::mat& dataset,
161  arma::mat& probabilities) const;
162 
171  double ComputeAccuracy(const arma::mat& testData,
172  const arma::Row<size_t>& labels) const;
183  template<typename OptimizerType = ens::L_BFGS>
184  double Train(const arma::mat& data,
185  const arma::Row<size_t>& labels,
186  const size_t numClasses,
187  OptimizerType optimizer = OptimizerType());
201  template<typename OptimizerType = ens::L_BFGS, typename... CallbackTypes>
202  double Train(const arma::mat& data,
203  const arma::Row<size_t>& labels,
204  const size_t numClasses,
205  OptimizerType optimizer,
206  CallbackTypes&&... callbacks);
207 
209  size_t& NumClasses() { return numClasses; }
211  size_t NumClasses() const { return numClasses; }
212 
214  double& Lambda() { return lambda; }
216  double Lambda() const { return lambda; }
217 
219  bool FitIntercept() const { return fitIntercept; }
220 
222  arma::mat& Parameters() { return parameters; }
224  const arma::mat& Parameters() const { return parameters; }
225 
227  size_t FeatureSize() const
228  { return fitIntercept ? parameters.n_cols - 1:
229  parameters.n_cols; }
230 
234  template<typename Archive>
235  void serialize(Archive& ar, const uint32_t /* version */)
236  {
237  ar(CEREAL_NVP(parameters));
238  ar(CEREAL_NVP(numClasses));
239  ar(CEREAL_NVP(lambda));
240  ar(CEREAL_NVP(fitIntercept));
241  }
242 
243  private:
245  arma::mat parameters;
247  size_t numClasses;
249  double lambda;
251  bool fitIntercept;
252 };
253 
254 } // namespace regression
255 } // namespace mlpack
256 
257 // Include implementation.
258 #include "softmax_regression_impl.hpp"
259 
260 #endif
SoftmaxRegression(const size_t inputSize=0, const size_t numClasses=0, const bool fitIntercept=false)
Initialize the SoftmaxRegression without performing training.
Linear algebra utility functions, generally performed on matrices or vectors.
The core includes that mlpack expects; standard C++ includes and Armadillo.
double Lambda() const
Gets the regularization parameter.
bool FitIntercept() const
Gets the intercept term flag. We can&#39;t change this after training.
size_t NumClasses() const
Gets the number of classes.
double Train(const arma::mat &data, const arma::Row< size_t > &labels, const size_t numClasses, OptimizerType optimizer=OptimizerType())
Train the softmax regression with the given training data.
Softmax Regression is a classifier which can be used for classification when the data available can t...
arma::mat & Parameters()
Get the model parameters.
double ComputeAccuracy(const arma::mat &testData, const arma::Row< size_t > &labels) const
Computes accuracy of the learned model given the feature data and the labels associated with each dat...
double & Lambda()
Sets the regularization parameter.
size_t FeatureSize() const
Gets the features size of the training data.
size_t & NumClasses()
Sets the number of classes.
void Classify(const arma::mat &dataset, arma::Row< size_t > &labels) const
Classify the given points, returning the predicted labels for each point.
const arma::mat & Parameters() const
Get the model parameters.
void serialize(Archive &ar, const uint32_t)
Serialize the SoftmaxRegression model.