13 #ifndef MLPACK_METHODS_ANN_LAYER_REINFORCE_NORMAL_HPP    14 #define MLPACK_METHODS_ANN_LAYER_REINFORCE_NORMAL_HPP    31     typename InputDataType = arma::mat,
    32     typename OutputDataType = arma::mat
    52   void Forward(
const arma::Mat<eT>& input, arma::Mat<eT>& output);
    63   template<
typename DataType>
    64   void Backward(
const DataType& input, 
const DataType& , DataType& g);
    72   OutputDataType& 
Delta()
 const { 
return delta; }
    74   OutputDataType& 
Delta() { 
return delta; }
    82   double Reward()
 const { 
return reward; }
    92   template<
typename Archive>
    93   void serialize(Archive& ar, 
const uint32_t );
   103   OutputDataType delta;
   106   OutputDataType outputParameter;
   109   std::vector<arma::mat> moduleInputParameter;
   119 #include "reinforce_normal_impl.hpp" ReinforceNormal(const double stdev=1.0)
Create the ReinforceNormal object. 
 
OutputDataType & Delta() const
Get the delta. 
 
Linear algebra utility functions, generally performed on matrices or vectors. 
 
Implementation of the reinforce normal layer. 
 
The core includes that mlpack expects; standard C++ includes and Armadillo. 
 
double StandardDeviation() const
Get the standard deviation used during forward and backward pass. 
 
void Backward(const DataType &input, const DataType &, DataType &g)
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backw...
 
OutputDataType & OutputParameter()
Modify the output parameter. 
 
OutputDataType & Delta()
Modify the delta. 
 
double & Reward()
Modify the value of the deterministic parameter. 
 
void serialize(Archive &ar, const uint32_t)
Serialize the layer. 
 
double Reward() const
Get the value of the reward parameter. 
 
bool & Deterministic()
Modify the value of the deterministic parameter. 
 
bool Deterministic() const
Get the value of the deterministic parameter. 
 
OutputDataType & OutputParameter() const
Get the output parameter. 
 
void Forward(const arma::Mat< eT > &input, arma::Mat< eT > &output)
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activ...