13 #ifndef MLPACK_METHODS_ANN_LAYER_REINFORCE_NORMAL_HPP 14 #define MLPACK_METHODS_ANN_LAYER_REINFORCE_NORMAL_HPP 31 typename InputDataType = arma::mat,
32 typename OutputDataType = arma::mat
52 void Forward(
const arma::Mat<eT>& input, arma::Mat<eT>& output);
63 template<
typename DataType>
64 void Backward(
const DataType& input,
const DataType& , DataType& g);
72 OutputDataType&
Delta()
const {
return delta; }
74 OutputDataType&
Delta() {
return delta; }
82 double Reward()
const {
return reward; }
92 template<
typename Archive>
93 void serialize(Archive& ar,
const uint32_t );
103 OutputDataType delta;
106 OutputDataType outputParameter;
109 std::vector<arma::mat> moduleInputParameter;
119 #include "reinforce_normal_impl.hpp" ReinforceNormal(const double stdev=1.0)
Create the ReinforceNormal object.
OutputDataType & Delta() const
Get the delta.
Linear algebra utility functions, generally performed on matrices or vectors.
Implementation of the reinforce normal layer.
The core includes that mlpack expects; standard C++ includes and Armadillo.
double StandardDeviation() const
Get the standard deviation used during forward and backward pass.
void Backward(const DataType &input, const DataType &, DataType &g)
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backw...
OutputDataType & OutputParameter()
Modify the output parameter.
OutputDataType & Delta()
Modify the delta.
double & Reward()
Modify the value of the deterministic parameter.
void serialize(Archive &ar, const uint32_t)
Serialize the layer.
double Reward() const
Get the value of the reward parameter.
bool & Deterministic()
Modify the value of the deterministic parameter.
bool Deterministic() const
Get the value of the deterministic parameter.
OutputDataType & OutputParameter() const
Get the output parameter.
void Forward(const arma::Mat< eT > &input, arma::Mat< eT > &output)
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activ...