14 #ifndef MLPACK_METHODS_CF_DECOMPOSITION_POLICIES_REGULARIZED_SVD_METHOD_HPP 15 #define MLPACK_METHODS_CF_DECOMPOSITION_POLICIES_REGULARIZED_SVD_METHOD_HPP 51 maxIterations(maxIterations)
68 void Apply(
const arma::mat& data,
71 const size_t maxIterations,
77 regsvd.
Apply(data, rank, w, h);
86 double GetRating(
const size_t user,
const size_t item)
const 88 double rating = arma::as_scalar(w.row(item) * h.col(user));
100 rating = w * h.col(user);
115 template<
typename NeighborSearchPolicy>
117 const size_t numUsersForSimilarity,
118 arma::Mat<size_t>& neighborhood,
119 arma::mat& similarities)
const 128 arma::mat l = arma::chol(w.t() * w);
129 arma::mat stretchedH = l * h;
132 arma::mat query(stretchedH.n_rows, users.n_elem);
134 for (
size_t i = 0; i < users.n_elem; ++i)
135 query.col(i) = stretchedH.col(users(i));
137 NeighborSearchPolicy neighborSearch(stretchedH);
138 neighborSearch.Search(
139 query, numUsersForSimilarity, neighborhood, similarities);
143 const arma::mat&
W()
const {
return w; }
145 const arma::mat&
H()
const {
return h; }
155 template<
typename Archive>
164 size_t maxIterations;
RegSVDPolicy(const size_t maxIterations=10)
Use regularized SVD method to perform collaborative filtering.
Regularized SVD is a matrix factorization technique that seeks to reduce the error on the training se...
Linear algebra utility functions, generally performed on matrices or vectors.
const arma::mat & H() const
Get the User Matrix.
size_t MaxIterations() const
Get the number of iterations.
The core includes that mlpack expects; standard C++ includes and Armadillo.
void GetNeighborhood(const arma::Col< size_t > &users, const size_t numUsersForSimilarity, arma::Mat< size_t > &neighborhood, arma::mat &similarities) const
Get the neighborhood and corresponding similarities for a set of users.
double GetRating(const size_t user, const size_t item) const
Return predicted rating given user ID and item ID.
void serialize(Archive &ar, const uint32_t)
Serialization.
size_t & MaxIterations()
Modify the number of iterations.
Implementation of the Regularized SVD policy to act as a wrapper when accessing Regularized SVD from ...
const arma::mat & W() const
Get the Item Matrix.
void Apply(const arma::mat &data, const size_t rank, arma::mat &u, arma::mat &v)
Obtains the user and item matrices using the provided data and rank.
void Apply(const arma::mat &data, const arma::sp_mat &, const size_t rank, const size_t maxIterations, const double, const bool)
Apply Collaborative Filtering to the provided data set using the regularized SVD. ...
void GetRatingOfUser(const size_t user, arma::vec &rating) const
Get predicted ratings for a user.