Classes | |
class | SparseAutoencoder |
A sparse autoencoder is a neural network whose aim to learn compressed representations of the data, typically for dimensionality reduction, with a constraint on the activity of the neurons in the network. More... | |
class | SparseAutoencoderFunction |
This is a class for the sparse autoencoder objective function. More... | |
Functions | |
void | MaximalInputs (const arma::mat ¶meters, arma::mat &output) |
Given a parameters matrix from an autoencoder, maximize the hidden units of the parameters, storing the maximal inputs in the given output matrix. More... | |
void | NormalizeColByMax (const arma::mat &input, arma::mat &output) |
Normalize each column of the input matrix by its maximum value, if that maximum value is not zero. More... | |
void mlpack::nn::MaximalInputs | ( | const arma::mat & | parameters, |
arma::mat & | output | ||
) |
Given a parameters matrix from an autoencoder, maximize the hidden units of the parameters, storing the maximal inputs in the given output matrix.
Details can be found on the 'Visualizing a Trained Autoencoder' page of the Stanford UFLDL tutorial:
http://deeplearning.stanford.edu/wiki/index.php/Main_Page
This function is based on the implementation (display_network.m) from the "Exercise: Sparse Autoencoder" page of the UFLDL tutorial:
http://deeplearning.stanford.edu/wiki/index.php/Exercise:Sparse_Autoencoder
Example usage of this function can be seen below. Note that this function can work with the ColumnsToBlocks class in order to reshape the maximal inputs for visualization, as in the UFLDL tutorial. The code below demonstrates this.
The layout of the parameters matrix should be same as following
Also, the square root of vSize must be an integer (i.e. vSize must be a perfect square).
parameters | The parameters of the autoencoder. |
output | Matrix to store the maximal inputs in. |
void mlpack::nn::NormalizeColByMax | ( | const arma::mat & | input, |
arma::mat & | output | ||
) |
Normalize each column of the input matrix by its maximum value, if that maximum value is not zero.
input | The input data to normalize. |
output | A matrix to store the input data in after normalization. |