Alternating Matrix Factorization. More...
Classes | |
class | AMF |
This class implements AMF (alternating matrix factorization) on the given matrix V. More... | |
class | AverageInitialization |
This initialization rule initializes matrix W and H to root of the average of V, perturbed with uniform noise. More... | |
class | CompleteIncrementalTermination |
This class acts as a wrapper for basic termination policies to be used by SVDCompleteIncrementalLearning. More... | |
class | GivenInitialization |
This initialization rule for AMF simply fills the W and H matrices with the matrices given to the constructor of this object. More... | |
class | IncompleteIncrementalTermination |
This class acts as a wrapper for basic termination policies to be used by SVDIncompleteIncrementalLearning. More... | |
class | MaxIterationTermination |
This termination policy only terminates when the maximum number of iterations has been reached. More... | |
class | MergeInitialization |
This initialization rule for AMF simply takes in two initialization rules, and initialize W with the first rule and H with the second rule. More... | |
class | NMFALSUpdate |
This class implements a method titled 'Alternating Least Squares' described in the following paper: More... | |
class | NMFMultiplicativeDistanceUpdate |
The multiplicative distance update rules for matrices W and H. More... | |
class | NMFMultiplicativeDivergenceUpdate |
This follows a method described in the paper 'Algorithms for Non-negative. More... | |
class | RandomAcolInitialization |
This class initializes the W matrix of the AMF algorithm by averaging p randomly chosen columns of V. More... | |
class | RandomInitialization |
This initialization rule for AMF simply fills the W and H matrices with uniform random noise in [0, 1]. More... | |
class | SimpleResidueTermination |
This class implements a simple residue-based termination policy. More... | |
class | SimpleToleranceTermination |
This class implements residue tolerance termination policy. More... | |
class | SVDBatchLearning |
This class implements SVD batch learning with momentum. More... | |
class | SVDCompleteIncrementalLearning |
This class computes SVD using complete incremental batch learning, as described in the following paper: More... | |
class | SVDCompleteIncrementalLearning< arma::sp_mat > |
TODO : Merge this template specialized function for sparse matrix using common row_col_iterator. More... | |
class | SVDIncompleteIncrementalLearning |
This class computes SVD using incomplete incremental batch learning, as described in the following paper: More... | |
class | ValidationRMSETermination |
This class implements validation termination policy based on RMSE index. More... | |
Typedefs | |
typedef amf::AMF< amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::NMFALSUpdate > | NMFALSFactorizer |
template < typename MatType = arma::mat > | |
using | SVDBatchFactorizer = amf::AMF< amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::SVDBatchLearning > |
Convenience typedefs. More... | |
template < class MatType = arma::mat > | |
using | SVDCompleteIncrementalFactorizer = amf::AMF< amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::SVDCompleteIncrementalLearning< MatType > > |
SVDCompleteIncrementalFactorizer factorizes given matrix V into two matrices W and H by complete incremental gradient descent. More... | |
template < class MatType = arma::mat > | |
using | SVDIncompleteIncrementalFactorizer = amf::AMF< amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::SVDIncompleteIncrementalLearning > |
SVDIncompleteIncrementalFactorizer factorizes given matrix V into two matrices W and H by incomplete incremental gradient descent. More... | |
Functions | |
template < > | |
void | SVDBatchLearning::HUpdate< arma::sp_mat > (const arma::sp_mat &V, const arma::mat &W, arma::mat &H) |
template < > | |
void | SVDBatchLearning::WUpdate< arma::sp_mat > (const arma::sp_mat &V, arma::mat &W, const arma::mat &H) |
TODO : Merge this template specialized function for sparse matrix using common row_col_iterator. More... | |
template < > | |
void | SVDIncompleteIncrementalLearning::HUpdate< arma::sp_mat > (const arma::sp_mat &V, const arma::mat &W, arma::mat &H) |
template < > | |
void | SVDIncompleteIncrementalLearning::WUpdate< arma::sp_mat > (const arma::sp_mat &V, arma::mat &W, const arma::mat &H) |
TODO : Merge this template specialized function for sparse matrix using common row_col_iterator. More... | |
Alternating Matrix Factorization.
using SVDBatchFactorizer = amf::AMF< amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::SVDBatchLearning> |
Convenience typedefs.
SVDBatchFactorizer factorizes given matrix V into two matrices W and H by gradient descent. SVD batch learning is described in paper 'A Guide to singular Value Decomposition' by Chih-Chao Ma.
using SVDCompleteIncrementalFactorizer = amf::AMF< amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::SVDCompleteIncrementalLearning<MatType> > |
SVDCompleteIncrementalFactorizer factorizes given matrix V into two matrices W and H by complete incremental gradient descent.
SVD complete incremental learning is described in paper 'A Guide to singular Value Decomposition' by Chih-Chao Ma.
using SVDIncompleteIncrementalFactorizer = amf::AMF< amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::SVDIncompleteIncrementalLearning> |
SVDIncompleteIncrementalFactorizer factorizes given matrix V into two matrices W and H by incomplete incremental gradient descent.
SVD incomplete incremental learning is described in paper 'A Guide to singular Value Decomposition' by Chih-Chao Ma.
|
inline |
Definition at line 230 of file svd_batch_learning.hpp.
|
inline |
TODO : Merge this template specialized function for sparse matrix using common row_col_iterator.
WUpdate function specialization for sparse matrix
Definition at line 202 of file svd_batch_learning.hpp.
|
inline |
Definition at line 185 of file svd_incomplete_incremental_learning.hpp.
|
inline |
TODO : Merge this template specialized function for sparse matrix using common row_col_iterator.
template specialiazed functions for sparse matrices
Definition at line 166 of file svd_incomplete_incremental_learning.hpp.