12 #ifndef MLPACK_CORE_CV_METRICS_MSE_HPP 13 #define MLPACK_CORE_CV_METRICS_MSE_HPP 36 template<
typename MLAlgorithm,
typename DataType,
typename ResponsesType>
37 static double Evaluate(MLAlgorithm& model,
39 const ResponsesType& responses);
52 #include "mse_impl.hpp" The MeanSquaredError is a metric of performance for regression algorithms that is equal to the mean s...
Linear algebra utility functions, generally performed on matrices or vectors.
Include all of the base components required to write mlpack methods, and the main mlpack Doxygen docu...
static double Evaluate(MLAlgorithm &model, const DataType &data, const ResponsesType &responses)
Run prediction and calculate the mean squared error.
static const bool NeedsMinimization
Information for hyper-parameter tuning code.