12 #ifndef MLPACK_METHODS_ANN_LAYER_LP_POOLING_HPP 13 #define MLPACK_METHODS_ANN_LAYER_LP_POOLING_HPP 29 typename InputDataType = arma::mat,
30 typename OutputDataType = arma::mat
49 const size_t kernelWidth,
50 const size_t kernelHeight,
51 const size_t strideWidth = 1,
52 const size_t strideHeight = 1,
53 const bool floor =
true);
63 void Forward(
const arma::Mat<eT>& input, arma::Mat<eT>& output);
76 const arma::Mat<eT>& gy,
85 OutputDataType
const&
Delta()
const {
return delta; }
87 OutputDataType&
Delta() {
return delta; }
141 bool const&
Floor()
const {
return floor; }
151 template<
typename Archive>
152 void serialize(Archive& ar,
const uint32_t );
161 template<
typename eT>
162 void Pooling(
const arma::Mat<eT>& input, arma::Mat<eT>& output)
164 arma::Mat<eT> inputPre = input;
165 inputPre = arma::pow(inputPre, normType);
167 for (
size_t i = 1; i < input.n_cols; ++i)
168 inputPre.col(i) += inputPre.col(i - 1);
170 for (
size_t i = 1; i < input.n_rows; ++i)
171 inputPre.row(i) += inputPre.row(i - 1);
173 for (
size_t j = 0, colidx = 0; j < output.n_cols;
174 ++j, colidx += strideHeight)
176 for (
size_t i = 0, rowidx = 0; i < output.n_rows;
177 ++i, rowidx += strideWidth)
180 size_t rowEnd = rowidx + kernelWidth - 1;
181 size_t colEnd = colidx + kernelHeight - 1;
183 if (rowEnd > input.n_rows - 1)
184 rowEnd = input.n_rows - 1;
185 if (colEnd > input.n_cols - 1)
186 colEnd = input.n_cols - 1;
188 val += inputPre(rowEnd, colEnd);
192 val += inputPre(rowidx - 1, colidx - 1);
193 val -= inputPre(rowidx - 1, colEnd);
197 val -= inputPre(rowEnd, colidx - 1);
203 output = arma::pow(output, 1.0 / normType);
212 template<
typename eT>
213 void Unpooling(
const arma::Mat<eT>& input,
214 const arma::Mat<eT>& error,
215 arma::Mat<eT>& output)
217 arma::Mat<eT> unpooledError;
218 for (
size_t j = 0, colidx = 0; j < input.n_cols; j += strideHeight,
221 for (
size_t i = 0, rowidx = 0; i < input.n_rows; i += strideWidth,
224 size_t rowEnd = i + kernelWidth - 1;
225 size_t colEnd = j + kernelHeight - 1;
227 if (rowEnd > input.n_rows - 1)
231 rowEnd = input.n_rows - 1;
234 if (colEnd > input.n_cols - 1)
238 colEnd = input.n_cols - 1;
241 arma::mat InputArea = input(arma::span(i, rowEnd),
242 arma::span(j, colEnd));
244 size_t sum = pow(arma::accu(arma::pow(InputArea, normType)),
245 (normType - 1) / normType);
246 unpooledError = arma::Mat<eT>(InputArea.n_rows, InputArea.n_cols);
247 unpooledError.fill(error(rowidx, colidx) / InputArea.n_elem);
248 unpooledError %= arma::pow(InputArea, normType - 1);
249 unpooledError /= sum;
250 output(arma::span(i, i + InputArea.n_rows - 1),
251 arma::span(j, j + InputArea.n_cols - 1)) += unpooledError;
299 arma::cube outputTemp;
302 arma::cube inputTemp;
308 OutputDataType delta;
311 OutputDataType gradient;
314 OutputDataType outputParameter;
322 #include "lp_pooling_impl.hpp" size_t const & InputWidth() const
Get the intput width.
void serialize(Archive &ar, const uint32_t)
Serialize the layer.
size_t StrideWidth() const
Get the stride width.
LpPooling()
Create the LpPooling object.
Linear algebra utility functions, generally performed on matrices or vectors.
size_t & StrideWidth()
Modify the stride width.
Implementation of the LPPooling.
size_t & KernelWidth()
Modify the kernel width.
size_t KernelHeight() const
Get the kernel height.
size_t OutputSize() const
Get the output size.
The core includes that mlpack expects; standard C++ includes and Armadillo.
size_t WeightSize() const
Get the size of the weights.
OutputDataType const & Delta() const
Get the delta.
size_t & InputWidth()
Modify the input width.
size_t StrideHeight() const
Get the stride height.
bool & Floor()
Modify the value of the rounding operation.
size_t KernelWidth() const
Get the kernel width.
size_t & NormType()
Modify the normType.
OutputDataType const & OutputParameter() const
Get the output parameter.
size_t const & OutputWidth() const
Get the output width.
size_t & OutputWidth()
Modify the output width.
OutputDataType & OutputParameter()
Modify the output parameter.
size_t & StrideHeight()
Modify the stride height.
size_t & KernelHeight()
Modify the kernel height.
size_t const & InputHeight() const
Get the input height.
size_t const & OutputHeight() const
Get the output height.
size_t & OutputHeight()
Modify the output height.
size_t NormType() const
Get the normType.
void Forward(const arma::Mat< eT > &input, arma::Mat< eT > &output)
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activ...
OutputDataType & Delta()
Modify the delta.
size_t & InputHeight()
Modify the input height.
void Backward(const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g)
Ordinary feed backward pass of a neural network, using 3rd-order tensors as input, calculating the function f(x) by propagating x backwards through f.
size_t InputSize() const
Get the input size.
bool const & Floor() const
Get the value of the rounding operation.