13 #ifndef MLPACK_METHODS_ANN_LAYER_LINEAR_NO_BIAS_HPP    14 #define MLPACK_METHODS_ANN_LAYER_LINEAR_NO_BIAS_HPP    34     typename InputDataType = arma::mat,
    35     typename OutputDataType = arma::mat,
    36     typename RegularizerType = NoRegularizer
    52                RegularizerType regularizer = RegularizerType());
    67   void Forward(
const arma::Mat<eT>& input, arma::Mat<eT>& output);
    80                 const arma::Mat<eT>& gy,
    91   void Gradient(
const arma::Mat<eT>& input,
    92                 const arma::Mat<eT>& error,
    93                 arma::Mat<eT>& gradient);
    96   OutputDataType 
const& 
Parameters()
 const { 
return weights; }
   111   OutputDataType 
const& 
Delta()
 const { 
return delta; }
   113   OutputDataType& 
Delta() { 
return delta; }
   122   OutputDataType 
const& 
Gradient()
 const { 
return gradient; }
   129     return inSize * outSize;
   141   template<
typename Archive>
   142   void serialize(Archive& ar, 
const uint32_t );
   152   OutputDataType weights;
   155   OutputDataType weight;
   158   OutputDataType delta;
   161   OutputDataType gradient;
   164   InputDataType inputParameter;
   167   OutputDataType outputParameter;
   170   RegularizerType regularizer;
   177 #include "linear_no_bias_impl.hpp" OutputDataType & Gradient()
Modify the gradient. 
 
OutputDataType & OutputParameter()
Modify the output parameter. 
 
Linear algebra utility functions, generally performed on matrices or vectors. 
 
InputDataType const  & InputParameter() const
Get the input parameter. 
 
OutputDataType const  & OutputParameter() const
Get the output parameter. 
 
InputDataType & InputParameter()
Modify the input parameter. 
 
void Backward(const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g)
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backw...
 
void Forward(const arma::Mat< eT > &input, arma::Mat< eT > &output)
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activ...
 
The core includes that mlpack expects; standard C++ includes and Armadillo. 
 
OutputDataType const  & Gradient() const
Get the gradient. 
 
OutputDataType const  & Parameters() const
Get the parameters. 
 
size_t WeightSize() const
Get the size of the weights. 
 
size_t InputShape() const
Get the shape of the input. 
 
OutputDataType & Delta()
Modify the delta. 
 
OutputDataType & Parameters()
Modify the parameters. 
 
LinearNoBias()
Create the LinearNoBias object. 
 
size_t OutputSize() const
Get the output size. 
 
OutputDataType const  & Delta() const
Get the delta. 
 
size_t InputSize() const
Get the input size. 
 
void serialize(Archive &ar, const uint32_t)
Serialize the layer.