12 #ifndef MLPACK_CORE_KERNELS_LAPLACIAN_KERNEL_HPP 13 #define MLPACK_CORE_KERNELS_LAPLACIAN_KERNEL_HPP 60 template<
typename VecTypeA,
typename VecTypeB>
61 double Evaluate(
const VecTypeA& a,
const VecTypeB& b)
const 78 return exp(-t / bandwidth);
91 return exp(-t / bandwidth) / -bandwidth;
100 template<
typename Archive>
103 ar(CEREAL_NVP(bandwidth));
117 static const bool IsNormalized =
true;
119 static const bool UsesSquaredDistance =
false;
double Gradient(const double t) const
Evaluation of the gradient of the Laplacian kernel given the distance between two points...
This is a template class that can provide information about various kernels.
Linear algebra utility functions, generally performed on matrices or vectors.
double Bandwidth() const
Get the bandwidth.
The core includes that mlpack expects; standard C++ includes and Armadillo.
void serialize(Archive &ar, const uint32_t)
Serialize the kernel.
static VecTypeA::elem_type Evaluate(const VecTypeA &a, const VecTypeB &b)
Computes the distance between two points.
double & Bandwidth()
Modify the bandwidth.
LaplacianKernel()
Default constructor; sets bandwidth to 1.0.
LaplacianKernel(double bandwidth)
Construct the Laplacian kernel with a custom bandwidth.
double Evaluate(const double t) const
Evaluation of the Laplacian kernel given the distance between two points.
The standard Laplacian kernel.
double Evaluate(const VecTypeA &a, const VecTypeB &b) const
Evaluation of the Laplacian kernel.