12 #ifndef MLPACK_METHODS_ANN_LOSS_FUNCTION_HUBER_LOSS_HPP 13 #define MLPACK_METHODS_ANN_LOSS_FUNCTION_HUBER_LOSS_HPP 33 typename InputDataType = arma::mat,
34 typename OutputDataType = arma::mat
46 HuberLoss(
const double delta = 1.0,
const bool mean =
true);
55 template<
typename PredictionType,
typename TargetType>
56 typename PredictionType::elem_type
Forward(
const PredictionType& prediction,
57 const TargetType& target);
67 template<
typename PredictionType,
typename TargetType,
typename LossType>
68 void Backward(
const PredictionType& prediction,
69 const TargetType& target,
78 double Delta()
const {
return delta; }
80 double&
Delta() {
return delta; }
83 bool Mean()
const {
return mean; }
85 bool&
Mean() {
return mean; }
90 template<
typename Archive>
91 void serialize(Archive& ar,
const uint32_t );
95 OutputDataType outputParameter;
108 #include "huber_loss_impl.hpp" The Huber loss is a loss function used in robust regression, that is less sensitive to outliers in da...
Linear algebra utility functions, generally performed on matrices or vectors.
double Delta() const
Get the value of delta.
The core includes that mlpack expects; standard C++ includes and Armadillo.
void serialize(Archive &ar, const uint32_t)
Serialize the layer.
bool Mean() const
Get the value of reduction type.
bool & Mean()
Set the value of reduction type.
double & Delta()
Set the value of delta.
OutputDataType & OutputParameter() const
Get the output parameter.
HuberLoss(const double delta=1.0, const bool mean=true)
Create the HuberLoss object.
void Backward(const PredictionType &prediction, const TargetType &target, LossType &loss)
Ordinary feed backward pass of a neural network.
OutputDataType & OutputParameter()
Modify the output parameter.
PredictionType::elem_type Forward(const PredictionType &prediction, const TargetType &target)
Computes the Huber Loss function.