27 #ifndef MLPACK_METHODS_ANN_LAYER_GLIMPSE_HPP 28 #define MLPACK_METHODS_ANN_LAYER_GLIMPSE_HPP 51 template<
typename MatType>
54 return arma::mean(arma::mean(input));
64 template<
typename MatType>
65 void Unpooling(
const MatType& input,
const double value, MatType& output)
67 output = arma::zeros<MatType>(input.n_rows, input.n_cols);
68 const double mean = arma::mean(arma::mean(input));
70 output.elem(arma::find(mean == input, 1)).fill(value);
85 typename InputDataType = arma::mat,
86 typename OutputDataType = arma::mat
103 Glimpse(
const size_t inSize = 0,
104 const size_t size = 0,
105 const size_t depth = 3,
106 const size_t scale = 2,
107 const size_t inputWidth = 0,
108 const size_t inputHeight = 0);
116 template<
typename eT>
117 void Forward(
const arma::Mat<eT>& input, arma::Mat<eT>& output);
126 template<
typename eT>
127 void Backward(
const arma::Mat<eT>& ,
128 const arma::Mat<eT>& gy,
137 OutputDataType&
Delta()
const {
return delta; }
139 OutputDataType&
Delta() {
return delta; }
145 this->location = location;
174 size_t const&
Depth()
const {
return depth; }
177 size_t const&
Scale()
const {
return scale; }
194 template<
typename Archive>
195 void serialize(Archive& ar,
const uint32_t );
203 void Transform(arma::mat& w)
207 for (
size_t i = 0, k = 0; i < w.n_elem; ++k)
209 for (
size_t j = 0; j < w.n_cols; ++j, ++i)
221 void Transform(arma::cube& w)
223 for (
size_t i = 0; i < w.n_slices; ++i)
225 arma::mat t = w.slice(i);
238 template<
typename eT>
239 void Pooling(
const size_t kSize,
240 const arma::Mat<eT>& input,
241 arma::Mat<eT>& output)
243 const size_t rStep = kSize;
244 const size_t cStep = kSize;
246 for (
size_t j = 0; j < input.n_cols; j += cStep)
248 for (
size_t i = 0; i < input.n_rows; i += rStep)
250 output(i / rStep, j / cStep) += pooling.Pooling(
251 input(arma::span(i, i + rStep - 1), arma::span(j, j + cStep - 1)));
263 template<
typename eT>
264 void Unpooling(
const arma::Mat<eT>& input,
265 const arma::Mat<eT>& error,
266 arma::Mat<eT>& output)
268 const size_t rStep = input.n_rows / error.n_rows;
269 const size_t cStep = input.n_cols / error.n_cols;
271 arma::Mat<eT> unpooledError;
272 for (
size_t j = 0; j < input.n_cols; j += cStep)
274 for (
size_t i = 0; i < input.n_rows; i += rStep)
276 const arma::Mat<eT>& inputArea = input(arma::span(i, i + rStep - 1),
277 arma::span(j, j + cStep - 1));
279 pooling.Unpooling(inputArea, error(i / rStep, j / cStep),
282 output(arma::span(i, i + rStep - 1),
283 arma::span(j, j + cStep - 1)) += unpooledError;
295 template<
typename eT>
296 void ReSampling(
const arma::Mat<eT>& input, arma::Mat<eT>& output)
298 double wRatio = (double) (input.n_rows - 1) / (size - 1);
299 double hRatio = (double) (input.n_cols - 1) / (size - 1);
301 double iWidth = input.n_rows - 1;
302 double iHeight = input.n_cols - 1;
304 for (
size_t y = 0; y < size; y++)
306 for (
size_t x = 0; x < size; x++)
308 double ix = wRatio * x;
309 double iy = hRatio * y;
312 double ixNw = std::floor(ix);
313 double iyNw = std::floor(iy);
314 double ixNe = ixNw + 1;
315 double iySw = iyNw + 1;
318 double se = (ix - ixNw) * (iy - iyNw);
319 double sw = (ixNe - ix) * (iy - iyNw);
320 double ne = (ix - ixNw) * (iySw - iy);
321 double nw = (ixNe - ix) * (iySw - iy);
324 output(y, x) = input(iyNw, ixNw) * nw +
325 input(iyNw, std::min(ixNe, iWidth)) * ne +
326 input(std::min(iySw, iHeight), ixNw) * sw +
327 input(std::min(iySw, iHeight), std::min(ixNe, iWidth)) * se;
340 template<
typename eT>
341 void DownwardReSampling(
const arma::Mat<eT>& input,
342 const arma::Mat<eT>& error,
343 arma::Mat<eT>& output)
345 double iWidth = input.n_rows - 1;
346 double iHeight = input.n_cols - 1;
348 double wRatio = iWidth / (size - 1);
349 double hRatio = iHeight / (size - 1);
351 for (
size_t y = 0; y < size; y++)
353 for (
size_t x = 0; x < size; x++)
355 double ix = wRatio * x;
356 double iy = hRatio * y;
359 double ixNw = std::floor(ix);
360 double iyNw = std::floor(iy);
361 double ixNe = ixNw + 1;
362 double iySw = iyNw + 1;
365 double se = (ix - ixNw) * (iy - iyNw);
366 double sw = (ixNe - ix) * (iy - iyNw);
367 double ne = (ix - ixNw) * (iySw - iy);
368 double nw = (ixNe - ix) * (iySw - iy);
370 double ograd = error(y, x);
372 output(iyNw, ixNw) = output(iyNw, ixNw) + nw * ograd;
373 output(iyNw, std::min(ixNe, iWidth)) = output(iyNw,
374 std::min(ixNe, iWidth)) + ne * ograd;
375 output(std::min(iySw, iHeight), ixNw) = output(std::min(iySw, iHeight),
377 output(std::min(iySw, iHeight), std::min(ixNe, iWidth)) = output(
378 std::min(iySw, iHeight), std::min(ixNe, iWidth)) + se * ograd;
408 OutputDataType delta;
411 OutputDataType outputParameter;
417 arma::cube inputTemp;
420 arma::cube outputTemp;
429 std::vector<arma::mat> locationParameter;
442 #include "glimpse_impl.hpp" size_t & InputHeight()
Modify the input height.
size_t const & OutputHeight() const
Get the output height.
Linear algebra utility functions, generally performed on matrices or vectors.
double Pooling(const MatType &input)
The core includes that mlpack expects; standard C++ includes and Armadillo.
size_t GlimpseSize() const
Get the used glimpse size (height = width).
size_t InputShape() const
Get the shape of the input.
OutputDataType & OutputParameter() const
Get the output parameter.
size_t & InputWidth()
Modify input the width.
OutputDataType & Delta() const
Get the detla.
void Unpooling(const MatType &input, const double value, MatType &output)
size_t & OutputWidth()
Modify the output width.
size_t const & InputWidth() const
Get the input width.
OutputDataType & Delta()
Modify the delta.
size_t InSize() const
Get the size of the input units.
size_t const & Scale() const
Get the scale fraction.
OutputDataType & OutputParameter()
Modify the output parameter.
size_t const & InputHeight() const
Get the input height.
bool & Deterministic()
Modify the value of the deterministic parameter.
void Location(const arma::mat &location)
Set the locationthe x and y coordinate of the center of the output glimpse.
The glimpse layer returns a retina-like representation (down-scaled cropped images) of increasing sca...
size_t const & OutputWidth() const
Get the output width.
bool Deterministic() const
Get the value of the deterministic parameter.
size_t & OutputHeight()
Modify the output height.
size_t const & Depth() const
Get the number of patches to crop per glimpse.