14 #ifndef MLPACK_CORE_KERNELS_GAUSSIAN_KERNEL_HPP 15 #define MLPACK_CORE_KERNELS_GAUSSIAN_KERNEL_HPP 50 gamma(-0.5 * pow(bandwidth, -2.0))
64 template<
typename VecTypeA,
typename VecTypeB>
65 double Evaluate(
const VecTypeA& a,
const VecTypeB& b)
const 81 return exp(gamma * std::pow(t, 2.0));
93 return 2 * t * gamma * exp(gamma * std::pow(t, 2.0));
105 return gamma * exp(gamma * t);
116 return pow(sqrt(2.0 *
M_PI) * bandwidth, (
double) dimension);
126 template<
typename VecTypeA,
typename VecTypeB>
130 2.0)) / (
Normalizer(a.n_rows) * pow(2.0, (
double) a.n_rows / 2.0));
141 this->bandwidth = bandwidth;
142 this->gamma = -0.5 * pow(bandwidth, -2.0);
146 double Gamma()
const {
return gamma; }
149 template<
typename Archive>
152 ar(CEREAL_NVP(bandwidth));
153 ar(CEREAL_NVP(gamma));
171 static const bool IsNormalized =
true;
173 static const bool UsesSquaredDistance =
true;
double Bandwidth() const
Get the bandwidth.
This is a template class that can provide information about various kernels.
double GradientForSquaredDistance(const double t) const
Evaluation of the gradient of Gaussian kernel given the squared distance between two points...
Linear algebra utility functions, generally performed on matrices or vectors.
The core includes that mlpack expects; standard C++ includes and Armadillo.
double Gradient(const double t) const
Evaluation of the gradient of Gaussian kernel given the distance between two points.
static VecTypeA::elem_type Evaluate(const VecTypeA &a, const VecTypeB &b)
Computes the distance between two points.
double Evaluate(const double t) const
Evaluation of the Gaussian kernel given the distance between two points.
GaussianKernel(const double bandwidth)
Construct the Gaussian kernel with a custom bandwidth.
GaussianKernel()
Default constructor; sets bandwidth to 1.0.
void serialize(Archive &ar, const uint32_t)
Serialize the kernel.
double Gamma() const
Get the precalculated constant.
double ConvolutionIntegral(const VecTypeA &a, const VecTypeB &b)
Obtain a convolution integral of the Gaussian kernel.
double Evaluate(const VecTypeA &a, const VecTypeB &b) const
Evaluation of the Gaussian kernel.
The standard Gaussian kernel.
void Bandwidth(const double bandwidth)
Modify the bandwidth.
double Normalizer(const size_t dimension)
Obtain the normalization constant of the Gaussian kernel.