12 #ifndef MLPACK_CORE_KERNELS_EPANECHNIKOV_KERNEL_HPP 13 #define MLPACK_CORE_KERNELS_EPANECHNIKOV_KERNEL_HPP 40 inverseBandwidthSquared(1.0 / (bandwidth * bandwidth))
51 template<
typename VecTypeA,
typename VecTypeB>
52 double Evaluate(
const VecTypeA& a,
const VecTypeB& b)
const;
58 double Evaluate(
const double distance)
const;
65 double Gradient(
const double distance)
const;
82 template<
typename VecTypeA,
typename VecTypeB>
95 template<
typename Archive>
96 void serialize(Archive& ar,
const uint32_t version);
102 double inverseBandwidthSquared;
111 static const bool IsNormalized =
true;
113 static const bool UsesSquaredDistance =
true;
120 #include "epanechnikov_kernel_impl.hpp" double Gradient(const double distance) const
Evaluate the Gradient of Epanechnikov kernel given that the distance between the two input points is ...
This is a template class that can provide information about various kernels.
Linear algebra utility functions, generally performed on matrices or vectors.
The core includes that mlpack expects; standard C++ includes and Armadillo.
EpanechnikovKernel(const double bandwidth=1.0)
Instantiate the Epanechnikov kernel with the given bandwidth (default 1.0).
double Normalizer(const size_t dimension)
Compute the normalizer of this Epanechnikov kernel for the given dimension.
The Epanechnikov kernel, defined as.
double GradientForSquaredDistance(const double distanceSquared) const
Evaluate the Gradient of Epanechnikov kernel given that the squared distance between the two input po...
void serialize(Archive &ar, const uint32_t version)
Serialize the kernel.
double ConvolutionIntegral(const VecTypeA &a, const VecTypeB &b)
Obtains the convolution integral [integral of K(||x-a||) K(||b-x||) dx] for the two vectors...
double Evaluate(const VecTypeA &a, const VecTypeB &b) const
Evaluate the Epanechnikov kernel on the given two inputs.