12 #ifndef MLPACK_CORE_CV_CV_BASE_HPP    13 #define MLPACK_CORE_CV_CV_BASE_HPP    35 template<
typename MLAlgorithm,
    37          typename PredictionsType,
    57   CVBase(
const size_t numClasses);
    67          const size_t numClasses);
    73                                     const PredictionsType& ys);
    80                                        const WeightsType& weights);
    86   template<
typename... MLAlgorithmArgs>
    87   MLAlgorithm 
Train(
const MatType& xs,
    88                     const PredictionsType& ys,
    89                     const MLAlgorithmArgs&... args);
    95   template<
typename... MLAlgorithmArgs>
    96   MLAlgorithm 
Train(
const MatType& xs,
    97                     const PredictionsType& ys,
    98                     const WeightsType& weights,
    99                     const MLAlgorithmArgs&... args);
   103       "The given MLAlgorithm is not supported by MetaInfoExtractor");
   108   const bool isDatasetInfoPassed;
   115   static void AssertSizeEquality(
const MatType& xs,
   116                                  const PredictionsType& ys);
   121   static void AssertWeightsSize(
const MatType& xs,
   122                                 const WeightsType& weights);
   128   template<
typename... MLAlgorithmArgs,
   130            typename = 
typename std::enable_if<Enabled>::type>
   131   MLAlgorithm TrainModel(
const MatType& xs,
   132                          const PredictionsType& ys,
   133                          const MLAlgorithmArgs&... args);
   139   template<
typename... MLAlgorithmArgs,
   141            typename = 
typename std::enable_if<Enabled>::type,
   143   MLAlgorithm TrainModel(
const MatType& xs,
   144                          const PredictionsType& ys,
   145                          const MLAlgorithmArgs&... args);
   151   template<
typename... MLAlgorithmArgs,
   153            typename = 
typename std::enable_if<Enabled>::type,
   156   MLAlgorithm TrainModel(
const MatType& xs,
   157                          const PredictionsType& ys,
   158                          const MLAlgorithmArgs&... args);
   164   template<
typename... MLAlgorithmArgs,
   166            typename = 
typename std::enable_if<Enabled>::type>
   167   MLAlgorithm TrainModel(
const MatType& xs,
   168                          const PredictionsType& ys,
   169                          const WeightsType& weights,
   170                          const MLAlgorithmArgs&... args);
   176   template<
typename... MLAlgorithmArgs,
   178            typename = 
typename std::enable_if<Enabled>::type,
   180   MLAlgorithm TrainModel(
const MatType& xs,
   181                          const PredictionsType& ys,
   182                          const WeightsType& weights,
   183                          const MLAlgorithmArgs&... args);
   189   template<
typename... MLAlgorithmArgs,
   191            typename = 
typename std::enable_if<Enabled>::type,
   194   MLAlgorithm TrainModel(
const MatType& xs,
   195                          const PredictionsType& ys,
   196                          const WeightsType& weights,
   197                          const MLAlgorithmArgs&... args);
   208   template<
bool ConstructableWithoutDatasetInfo,
   209            typename... MLAlgorithmArgs,
   211                typename std::enable_if<ConstructableWithoutDatasetInfo>::type>
   212   MLAlgorithm TrainModel(
const MatType& xs,
   213                          const PredictionsType& ys,
   214                          const MLAlgorithmArgs&... args);
   220   template<
bool ConstructableWithoutDatasetInfo,
   221            typename... MLAlgorithmArgs,
   223                typename std::enable_if<!ConstructableWithoutDatasetInfo>::type,
   225   MLAlgorithm TrainModel(
const MatType& xs,
   226                          const PredictionsType& ys,
   227                          const MLAlgorithmArgs&... args);
   234 #include "cv_base_impl.hpp" 
Auxiliary information for a dataset, including mappings to/from strings (or other types) and the data...
 
Linear algebra utility functions, generally performed on matrices or vectors. 
 
MLAlgorithm Train(const MatType &xs, const PredictionsType &ys, const MLAlgorithmArgs &... args)
Train MLAlgorithm with given data points, predictions, and hyperparameters depending on what CVBase c...
 
CVBase()
Assert that MLAlgorithm doesn't take any additional basic parameters like numClasses. 
 
static void AssertWeightsConsistency(const MatType &xs, const WeightsType &weights)
Assert weighted learning is supported and there is the equal number of data points and weights...
 
An auxiliary class for cross-validation. 
 
static void AssertDataConsistency(const MatType &xs, const PredictionsType &ys)
Assert there is the equal number of data points and predictions.