12 #ifndef MLPACK_METHODS_ANN_LAYER_CONVOLUTION_HPP 13 #define MLPACK_METHODS_ANN_LAYER_CONVOLUTION_HPP 71 typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>,
72 typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>,
73 typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>,
74 typename InputDataType = arma::mat,
75 typename OutputDataType = arma::mat
100 const size_t outSize,
101 const size_t kernelWidth,
102 const size_t kernelHeight,
103 const size_t strideWidth = 1,
104 const size_t strideHeight = 1,
105 const size_t padW = 0,
106 const size_t padH = 0,
107 const size_t inputWidth = 0,
108 const size_t inputHeight = 0,
109 const std::string& paddingType =
"None");
132 const size_t outSize,
133 const size_t kernelWidth,
134 const size_t kernelHeight,
135 const size_t strideWidth,
136 const size_t strideHeight,
137 const std::tuple<size_t, size_t>& padW,
138 const std::tuple<size_t, size_t>& padH,
139 const size_t inputWidth = 0,
140 const size_t inputHeight = 0,
141 const std::string& paddingType =
"None");
155 template<
typename eT>
156 void Forward(
const arma::Mat<eT>& input, arma::Mat<eT>& output);
167 template<
typename eT>
168 void Backward(
const arma::Mat<eT>& ,
169 const arma::Mat<eT>& gy,
179 template<
typename eT>
180 void Gradient(
const arma::Mat<eT>& ,
181 const arma::Mat<eT>& error,
182 arma::Mat<eT>& gradient);
190 arma::cube
const&
Weight()
const {
return weight; }
195 arma::mat
const&
Bias()
const {
return bias; }
197 arma::mat&
Bias() {
return bias; }
210 OutputDataType
const&
Delta()
const {
return delta; }
212 OutputDataType&
Delta() {
return delta; }
215 OutputDataType
const&
Gradient()
const {
return gradient; }
288 return (outSize * inSize * kernelWidth * kernelHeight) + outSize;
294 return inputHeight * inputWidth * inSize;
300 template<
typename Archive>
301 void serialize(Archive& ar,
const uint32_t );
314 size_t ConvOutSize(
const size_t size,
317 const size_t pSideOne,
318 const size_t pSideTwo)
320 return std::floor(size + pSideOne + pSideTwo - k) / s + 1;
326 void InitializeSamePadding();
334 template<
typename eT>
335 void Rotate180(
const arma::Cube<eT>& input, arma::Cube<eT>& output)
337 output = arma::Cube<eT>(input.n_rows, input.n_cols, input.n_slices);
340 for (
size_t s = 0; s < output.n_slices; s++)
341 output.slice(s) = arma::fliplr(arma::flipud(input.slice(s)));
350 template<
typename eT>
351 void Rotate180(
const arma::Mat<eT>& input, arma::Mat<eT>& output)
354 output = arma::fliplr(arma::flipud(input));
391 OutputDataType weights;
412 arma::cube outputTemp;
415 arma::cube inputPaddedTemp;
421 arma::cube gradientTemp;
427 OutputDataType delta;
430 OutputDataType gradient;
433 InputDataType inputParameter;
436 OutputDataType outputParameter;
443 #include "convolution_impl.hpp" size_t OutputWidth() const
Get the output width.
size_t & PadWLeft()
Modify the left padding width.
InputDataType const & InputParameter() const
Get the input parameter.
size_t InputShape() const
Get the shape of the input.
size_t & PadWRight()
Modify the right padding width.
OutputDataType const & Parameters() const
Get the parameters.
Linear algebra utility functions, generally performed on matrices or vectors.
Implementation of the Padding module class.
size_t & OutputHeight()
Modify the output height.
The core includes that mlpack expects; standard C++ includes and Armadillo.
OutputDataType const & OutputParameter() const
Get the output parameter.
Implementation of the Convolution class.
size_t KernelHeight() const
Get the kernel height.
size_t PadWRight() const
Get the right padding width.
size_t KernelWidth() const
Get the kernel width.
size_t PadHTop() const
Get the top padding height.
OutputDataType & Gradient()
Modify the gradient.
size_t StrideHeight() const
Get the stride height.
InputDataType & InputParameter()
Modify the input parameter.
size_t InputSize() const
Get the number of input maps.
size_t & KernelHeight()
Modify the kernel height.
size_t & InputHeight()
Modify the input height.
arma::mat & Bias()
Modify the bias of the layer.
size_t & PadHTop()
Modify the top padding height.
size_t StrideWidth() const
Get the stride width.
arma::mat const & Bias() const
Get the bias of the layer.
size_t InputWidth() const
Get the input width.
size_t InputHeight() const
Get the input height.
void Forward(const arma::Mat< eT > &input, arma::Mat< eT > &output)
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activ...
void serialize(Archive &ar, const uint32_t)
Serialize the layer.
OutputDataType const & Delta() const
Get the delta.
void Backward(const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g)
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backw...
size_t & InputWidth()
Modify input the width.
OutputDataType & Parameters()
Modify the parameters.
size_t & PadHBottom()
Modify the bottom padding height.
size_t PadWLeft() const
Get the left padding width.
size_t WeightSize() const
Get size of weights for the layer.
arma::cube const & Weight() const
Get the weight of the layer.
size_t & StrideHeight()
Modify the stride height.
size_t & OutputWidth()
Modify the output width.
arma::cube & Weight()
Modify the weight of the layer.
size_t OutputHeight() const
Get the output height.
OutputDataType & Delta()
Modify the delta.
OutputDataType & OutputParameter()
Modify the output parameter.
Convolution()
Create the Convolution object.
size_t & KernelWidth()
Modify the kernel width.
size_t & StrideWidth()
Modify the stride width.
size_t PadHBottom() const
Get the bottom padding height.
OutputDataType const & Gradient() const
Get the gradient.
size_t OutputSize() const
Get the number of output maps.