Public Member Functions | |
SoftmaxRegressionFunction (const arma::mat &data, const arma::Row< size_t > &labels, const size_t numClasses, const double lambda=0.0001, const bool fitIntercept=false) | |
Construct the Softmax Regression objective function with the given parameters. More... | |
double | Evaluate (const arma::mat ¶meters) const |
Evaluates the objective function of the softmax regression model using the given parameters. More... | |
double | Evaluate (const arma::mat ¶meters, const size_t start, const size_t batchSize=1) const |
Evaluate the objective function of the softmax regression model for a subset of the data points using the given parameters. More... | |
bool | FitIntercept () const |
Gets the intercept flag. More... | |
void | GetGroundTruthMatrix (const arma::Row< size_t > &labels, arma::sp_mat &groundTruth) |
Constructs the ground truth label matrix with the passed labels. More... | |
const arma::mat & | GetInitialPoint () const |
Return the initial point for the optimization. More... | |
void | GetProbabilitiesMatrix (const arma::mat ¶meters, arma::mat &probabilities, const size_t start, const size_t batchSize) const |
Evaluate the probabilities matrix with the passed parameters. More... | |
void | Gradient (const arma::mat ¶meters, arma::mat &gradient) const |
Evaluates the gradient values of the objective function given the current set of parameters. More... | |
void | Gradient (const arma::mat ¶meters, const size_t start, arma::mat &gradient, const size_t batchSize=1) const |
Evaluate the gradient of the objective function given the current set of parameters, on a subset of the data. More... | |
const arma::mat | InitializeWeights () |
Initializes the parameters of the model to suitable values. More... | |
double & | Lambda () |
Sets the regularization parameter. More... | |
double | Lambda () const |
Gets the regularization parameter. More... | |
size_t | NumClasses () const |
Gets the number of classes. More... | |
size_t | NumFeatures () const |
Gets the features size of the training data. More... | |
size_t | NumFunctions () const |
Return the number of separable functions (the number of predictor points). More... | |
void | PartialGradient (const arma::mat ¶meters, size_t j, arma::sp_mat &gradient) const |
Evaluates the gradient values of the objective function given the current set of parameters for a single feature indexed by j. More... | |
void | Shuffle () |
Shuffle the dataset. More... | |
Static Public Member Functions | |
static const arma::mat | InitializeWeights (const size_t featureSize, const size_t numClasses, const bool fitIntercept=false) |
Initialize Softmax Regression weights (trainable parameters) with the given parameters. More... | |
static void | InitializeWeights (arma::mat &weights, const size_t featureSize, const size_t numClasses, const bool fitIntercept=false) |
Initialize Softmax Regression weights (trainable parameters) with the given parameters. More... | |
Definition at line 21 of file softmax_regression_function.hpp.
SoftmaxRegressionFunction | ( | const arma::mat & | data, |
const arma::Row< size_t > & | labels, | ||
const size_t | numClasses, | ||
const double | lambda = 0.0001 , |
||
const bool | fitIntercept = false |
||
) |
Construct the Softmax Regression objective function with the given parameters.
data | Input training data, each column associate with one sample |
labels | Labels associated with the feature data. |
numClasses | Number of classes for classification. |
lambda | L2-regularization constant. |
fitIntercept | Intercept term flag. |
double Evaluate | ( | const arma::mat & | parameters | ) | const |
Evaluates the objective function of the softmax regression model using the given parameters.
The cost function has terms for the log likelihood error and the regularization cost. The objective function takes a low value when the model generalizes well for the given training data, while having small parameter values.
parameters | Current values of the model parameters. |
double Evaluate | ( | const arma::mat & | parameters, |
const size_t | start, | ||
const size_t | batchSize = 1 |
||
) | const |
Evaluate the objective function of the softmax regression model for a subset of the data points using the given parameters.
The cost function has terms for the log likelihood error and the regularization cost. The objective function takes a low value when the model generalizes well for the given training data, while having small parameter values.
parameters | Current values of the model parameters. |
start | First index of the data points to use. |
batchSize | Number of data points to evaluate objective for. |
|
inline |
Gets the intercept flag.
Definition at line 188 of file softmax_regression_function.hpp.
void GetGroundTruthMatrix | ( | const arma::Row< size_t > & | labels, |
arma::sp_mat & | groundTruth | ||
) |
Constructs the ground truth label matrix with the passed labels.
labels | Labels associated with the training data. |
groundTruth | Pointer to arma::mat which stores the computed matrix. |
|
inline |
Return the initial point for the optimization.
Definition at line 167 of file softmax_regression_function.hpp.
void GetProbabilitiesMatrix | ( | const arma::mat & | parameters, |
arma::mat & | probabilities, | ||
const size_t | start, | ||
const size_t | batchSize | ||
) | const |
Evaluate the probabilities matrix with the passed parameters.
probabilities(i, j) = . It represents the probability of data_j belongs to class i.
parameters | Current values of the model parameters. |
probabilities | Pointer to arma::mat which stores the probabilities. |
start | Index of point to start at. |
batchSize | Number of points to calculate probabilities for. |
void Gradient | ( | const arma::mat & | parameters, |
arma::mat & | gradient | ||
) | const |
Evaluates the gradient values of the objective function given the current set of parameters.
The function calculates the probabilities for each class given the parameters, and computes the gradients based on the difference from the ground truth.
parameters | Current values of the model parameters. |
gradient | Matrix where gradient values will be stored. |
void Gradient | ( | const arma::mat & | parameters, |
const size_t | start, | ||
arma::mat & | gradient, | ||
const size_t | batchSize = 1 |
||
) | const |
Evaluate the gradient of the objective function given the current set of parameters, on a subset of the data.
The function calculates the probabilities for each class given the parameters, and computes the gradients based on the difference from the ground truth.
parameters | Current values of the model parameters. |
start | First index of the data points to use. |
gradient | Matrix to store gradient into. |
batchSize | Number of data points to evaluate gradient for. |
const arma::mat InitializeWeights | ( | ) |
Initializes the parameters of the model to suitable values.
|
static |
Initialize Softmax Regression weights (trainable parameters) with the given parameters.
featureSize | The number of features in the training set. |
numClasses | Number of classes for classification. |
fitIntercept | If true, an intercept is fitted. |
|
static |
Initialize Softmax Regression weights (trainable parameters) with the given parameters.
weights | This will be filled with the initialized model weights. |
featureSize | The number of features in the training set. |
numClasses | Number of classes for classification. |
fitIntercept | Intercept term flag. |
|
inline |
Sets the regularization parameter.
Definition at line 183 of file softmax_regression_function.hpp.
|
inline |
Gets the regularization parameter.
Definition at line 185 of file softmax_regression_function.hpp.
|
inline |
Gets the number of classes.
Definition at line 170 of file softmax_regression_function.hpp.
|
inline |
Gets the features size of the training data.
Definition at line 173 of file softmax_regression_function.hpp.
|
inline |
Return the number of separable functions (the number of predictor points).
Definition at line 180 of file softmax_regression_function.hpp.
void PartialGradient | ( | const arma::mat & | parameters, |
size_t | j, | ||
arma::sp_mat & | gradient | ||
) | const |
Evaluates the gradient values of the objective function given the current set of parameters for a single feature indexed by j.
parameters | Current values of the model parameters. |
j | The index of the feature with respect to which the partial gradient is to be computed. |
gradient | Out param for the gradient value. |
void Shuffle | ( | ) |
Shuffle the dataset.