|
| | KDE (const double relError=KDEDefaultParams::relError, const double absError=KDEDefaultParams::absError, KernelType kernel=KernelType(), const KDEMode mode=KDEDefaultParams::mode, MetricType metric=MetricType(), const bool monteCarlo=KDEDefaultParams::monteCarlo, const double mcProb=KDEDefaultParams::mcProb, const size_t initialSampleSize=KDEDefaultParams::initialSampleSize, const double mcEntryCoef=KDEDefaultParams::mcEntryCoef, const double mcBreakCoef=KDEDefaultParams::mcBreakCoef) |
| | Initialize KDE object using custom instantiated Metric and Kernel objects. More...
|
| |
| | KDE (const KDE &other) |
| | Construct KDE object as a copy of the given model. More...
|
| |
| | KDE (KDE &&other) |
| | Construct KDE object taking ownership of the given model. More...
|
| |
| | ~KDE () |
| | Destroy the KDE object. More...
|
| |
| double | AbsoluteError () const |
| | Get absolute error tolerance. More...
|
| |
| void | AbsoluteError (const double newError) |
| | Modify absolute error tolerance (0 <= newError). More...
|
| |
| void | Evaluate (MatType querySet, arma::vec &estimations) |
| | Estimate density of each point in the query set given the data of the reference set. More...
|
| |
| void | Evaluate (Tree *queryTree, const std::vector< size_t > &oldFromNewQueries, arma::vec &estimations) |
| | Estimate density of each point in the query set given the data of an already created query tree. More...
|
| |
| void | Evaluate (arma::vec &estimations) |
| | Estimate density of each point in the reference set given the data of the reference set. More...
|
| |
| bool | IsTrained () const |
| | Check whether KDE model is trained or not. More...
|
| |
| const KernelType & | Kernel () const |
| | Get the kernel. More...
|
| |
| KernelType & | Kernel () |
| | Modify the kernel. More...
|
| |
| double | MCBreakCoef () const |
| | Get Monte Carlo break coefficient. More...
|
| |
| void | MCBreakCoef (const double newCoef) |
| | Modify Monte Carlo break coefficient. (0 < newCoef <= 1). More...
|
| |
| double | MCEntryCoef () const |
| | Get Monte Carlo entry coefficient. More...
|
| |
| void | MCEntryCoef (const double newCoef) |
| | Modify Monte Carlo entry coefficient. (newCoef >= 1). More...
|
| |
| size_t | MCInitialSampleSize () const |
| | Get Monte Carlo initial sample size. More...
|
| |
| size_t & | MCInitialSampleSize () |
| | Modify Monte Carlo initial sample size. More...
|
| |
| double | MCProb () const |
| | Get Monte Carlo probability of error being bounded by relative error. More...
|
| |
| void | MCProb (const double newProb) |
| | Modify Monte Carlo probability of error being bounded by relative error. More...
|
| |
| const MetricType & | Metric () const |
| | Get the metric. More...
|
| |
| MetricType & | Metric () |
| | Modify the metric. More...
|
| |
| KDEMode | Mode () const |
| | Get the mode of KDE. More...
|
| |
| KDEMode & | Mode () |
| | Modify the mode of KDE. More...
|
| |
| bool | MonteCarlo () const |
| | Get whether Monte Carlo estimations are being used or not. More...
|
| |
| bool & | MonteCarlo () |
| | Modify whether Monte Carlo estimations are being used or not. More...
|
| |
| KDE & | operator= (const KDE &other) |
| | Copy a KDE model. More...
|
| |
| KDE & | operator= (KDE &&other) |
| | Move a KDE model. More...
|
| |
| bool | OwnsReferenceTree () const |
| | Check whether reference tree is owned by the KDE model. More...
|
| |
| Tree * | ReferenceTree () |
| | Get the reference tree. More...
|
| |
| double | RelativeError () const |
| | Get relative error tolerance. More...
|
| |
| void | RelativeError (const double newError) |
| | Modify relative error tolerance (0 <= newError <= 1). More...
|
| |
|
| void | serialize (Archive &ar, const uint32_t version) |
| | Serialize the model. More...
|
| |
| void | Train (MatType referenceSet) |
| | Trains the KDE model. More...
|
| |
| void | Train (Tree *referenceTree, std::vector< size_t > *oldFromNewReferences) |
| | Trains the KDE model. More...
|
| |
template<typename KernelType = kernel::GaussianKernel, typename MetricType = mlpack::metric::EuclideanDistance, typename MatType = arma::mat, template< typename TreeMetricType, typename TreeStatType, typename TreeMatType > class TreeType = tree::KDTree, template< typename RuleType > class DualTreeTraversalType = TreeType<MetricType, kde::KDEStat, MatType>::template DualTreeTraverser, template< typename RuleType > class SingleTreeTraversalType = TreeType<MetricType, kde::KDEStat, MatType>::template SingleTreeTraverser>
class mlpack::kde::KDE< KernelType, MetricType, MatType, TreeType, DualTreeTraversalType, SingleTreeTraversalType >
The KDE class is a template class for performing Kernel Density Estimations.
In statistics, kernel density estimation is a way to estimate the probability density function of a variable in a non parametric way. This implementation performs this estimation using a tree-independent dual-tree algorithm. Details about this algorithm are available in KDERules.
- Template Parameters
-
| KernelType | Kernel function to use for KDE calculations. |
| MetricType | Metric to use for KDE calculations. |
| MatType | Type of data to use. |
| TreeType | Type of tree to use; must satisfy the TreeType policy API. |
| DualTreeTraversalType | Type of dual-tree traversal to use. |
| SingleTreeTraversalType | Type of single-tree traversal to use. |
Definition at line 88 of file kde.hpp.