NegativeLogLikelihood< InputDataType, OutputDataType > Class Template Reference

Implementation of the negative log likelihood layer. More...

Public Member Functions

 NegativeLogLikelihood ()
 Create the NegativeLogLikelihoodLayer object. More...

 
template
<
typename
PredictionType
,
typename
TargetType
,
typename
LossType
>
void Backward (const PredictionType &prediction, const TargetType &target, LossType &loss)
 Ordinary feed backward pass of a neural network. More...

 
OutputDataType & Delta () const
 Get the delta. More...

 
OutputDataType & Delta ()
 Modify the delta. More...

 
template
<
typename
PredictionType
,
typename
TargetType
>
PredictionType::elem_type Forward (const PredictionType &prediction, const TargetType &target)
 Computes the Negative log likelihood. More...

 
InputDataType & InputParameter () const
 Get the input parameter. More...

 
InputDataType & InputParameter ()
 Modify the input parameter. More...

 
OutputDataType & OutputParameter () const
 Get the output parameter. More...

 
OutputDataType & OutputParameter ()
 Modify the output parameter. More...

 
template
<
typename
Archive
>
void serialize (Archive &, const uint32_t)
 Serialize the layer. More...

 

Detailed Description


template
<
typename
InputDataType
=
arma::mat
,
typename
OutputDataType
=
arma::mat
>

class mlpack::ann::NegativeLogLikelihood< InputDataType, OutputDataType >

Implementation of the negative log likelihood layer.

The negative log likelihood layer expectes that the input contains log-probabilities for each class. The layer also expects a class index, in the range between 1 and the number of classes, as target when calling the Forward function.

Template Parameters
InputDataTypeType of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).
OutputDataTypeType of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).

Definition at line 35 of file negative_log_likelihood.hpp.

Constructor & Destructor Documentation

◆ NegativeLogLikelihood()

Create the NegativeLogLikelihoodLayer object.

Member Function Documentation

◆ Backward()

void Backward ( const PredictionType &  prediction,
const TargetType &  target,
LossType &  loss 
)

Ordinary feed backward pass of a neural network.

The negative log likelihood layer expects that the input contains log-probabilities for each class. The layer also expects a class index, in the range between 1 and the number of classes, as target when calling the Forward function.

Parameters
predictionPredictions used for evaluating the specified loss function.
targetThe target vector, that contains the class index in the range between 1 and the number of classes.
lossThe calculated error.

◆ Delta() [1/2]

OutputDataType& Delta ( ) const
inline

Get the delta.

Definition at line 83 of file negative_log_likelihood.hpp.

◆ Delta() [2/2]

OutputDataType& Delta ( )
inline

◆ Forward()

PredictionType::elem_type Forward ( const PredictionType &  prediction,
const TargetType &  target 
)

Computes the Negative log likelihood.

Parameters
ipredictionPredictions used for evaluating the specified loss function.
targetThe target vector, that contains the class index in the range between 1 and the number of classes.

◆ InputParameter() [1/2]

InputDataType& InputParameter ( ) const
inline

Get the input parameter.

Definition at line 73 of file negative_log_likelihood.hpp.

◆ InputParameter() [2/2]

InputDataType& InputParameter ( )
inline

Modify the input parameter.

Definition at line 75 of file negative_log_likelihood.hpp.

◆ OutputParameter() [1/2]

OutputDataType& OutputParameter ( ) const
inline

Get the output parameter.

Definition at line 78 of file negative_log_likelihood.hpp.

◆ OutputParameter() [2/2]

OutputDataType& OutputParameter ( )
inline

Modify the output parameter.

Definition at line 80 of file negative_log_likelihood.hpp.

◆ serialize()

void serialize ( Archive &  ,
const uint32_t   
)

The documentation for this class was generated from the following file: