Implementation of the MiniBatchDiscrimination layer. More...
Public Member Functions | |
| MiniBatchDiscrimination () | |
| Create the MiniBatchDiscrimination object. More... | |
| MiniBatchDiscrimination (const size_t inSize, const size_t outSize, const size_t features) | |
| Create the MiniBatchDiscrimination layer object using the specified number of units. More... | |
template < typename eT > | |
| void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
| Ordinary feed-backward pass of a neural network, calculating the function f(x) by propagating x backwards through f. More... | |
| OutputDataType const & | Delta () const |
| Get the delta. More... | |
| OutputDataType & | Delta () |
| Modify the delta. More... | |
template < typename eT > | |
| void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
| Ordinary feed-forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
template < typename eT > | |
| void | Gradient (const arma::Mat< eT > &input, const arma::Mat< eT > &, arma::Mat< eT > &gradient) |
| Calculate the gradient using the output delta and the input activation. More... | |
| OutputDataType const & | Gradient () const |
| Get the gradient. More... | |
| OutputDataType & | Gradient () |
| Modify the gradient. More... | |
| InputDataType const & | InputParameter () const |
| Get the input parameter. More... | |
| InputDataType & | InputParameter () |
| Modify the input parameter. More... | |
| size_t | InputShape () const |
| Get the shape of the input. More... | |
| OutputDataType const & | OutputParameter () const |
| Get the output parameter. More... | |
| OutputDataType & | OutputParameter () |
| Modify the output parameter. More... | |
| OutputDataType const & | Parameters () const |
| Get the parameters. More... | |
| OutputDataType & | Parameters () |
| Modify the parameters. More... | |
| void | Reset () |
| Reset the layer parameter. More... | |
template < typename Archive > | |
| void | serialize (Archive &ar, const uint32_t) |
| Serialize the layer. More... | |
Implementation of the MiniBatchDiscrimination layer.
MiniBatchDiscrimination is a layer of the discriminator that allows the discriminator to look at multiple data examples in combination and perform what is called as mini-batch discrimination. This helps prevent the collapse of the generator parameters to a setting where it emits the same point. This happens because normally a discriminator will process each example independently and there will be no mechanism to diversify the outputs of the generator.
For more information, see the following.
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
Definition at line 124 of file layer_types.hpp.
Create the MiniBatchDiscrimination object.
| MiniBatchDiscrimination | ( | const size_t | inSize, |
| const size_t | outSize, | ||
| const size_t | features | ||
| ) |
Create the MiniBatchDiscrimination layer object using the specified number of units.
| inSize | The number of input units. |
| outSize | The number of output units. |
| features | The number of features to compute for each dimension. |
| void Backward | ( | const arma::Mat< eT > & | , |
| const arma::Mat< eT > & | gy, | ||
| arma::Mat< eT > & | g | ||
| ) |
Ordinary feed-backward pass of a neural network, calculating the function f(x) by propagating x backwards through f.
Using the results from the feed-forward pass.
| * | (input) The propagated input activation. |
| gy | The backpropagated error. |
| g | The calculated gradient. |
|
inline |
Get the delta.
Definition at line 128 of file minibatch_discrimination.hpp.
|
inline |
Modify the delta.
Definition at line 130 of file minibatch_discrimination.hpp.
| void Forward | ( | const arma::Mat< eT > & | input, |
| arma::Mat< eT > & | output | ||
| ) |
Ordinary feed-forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
| input | Input data used for evaluating the specified function. |
| output | Resulting output activation. |
| void Gradient | ( | const arma::Mat< eT > & | input, |
| const arma::Mat< eT > & | , | ||
| arma::Mat< eT > & | gradient | ||
| ) |
Calculate the gradient using the output delta and the input activation.
| input | The input parameter used for calculating the gradient. |
| * | (error) The calculated error. |
| gradient | The calculated gradient. |
|
inline |
Get the gradient.
Definition at line 133 of file minibatch_discrimination.hpp.
|
inline |
Modify the gradient.
Definition at line 135 of file minibatch_discrimination.hpp.
|
inline |
Get the input parameter.
Definition at line 118 of file minibatch_discrimination.hpp.
|
inline |
Modify the input parameter.
Definition at line 120 of file minibatch_discrimination.hpp.
|
inline |
Get the shape of the input.
Definition at line 138 of file minibatch_discrimination.hpp.
References MiniBatchDiscrimination< InputDataType, OutputDataType >::serialize().
|
inline |
Get the output parameter.
Definition at line 123 of file minibatch_discrimination.hpp.
|
inline |
Modify the output parameter.
Definition at line 125 of file minibatch_discrimination.hpp.
|
inline |
Get the parameters.
Definition at line 113 of file minibatch_discrimination.hpp.
|
inline |
Modify the parameters.
Definition at line 115 of file minibatch_discrimination.hpp.
| void Reset | ( | ) |
Reset the layer parameter.
| void serialize | ( | Archive & | ar, |
| const uint32_t | |||
| ) |
Serialize the layer.
Referenced by MiniBatchDiscrimination< InputDataType, OutputDataType >::InputShape().