MeanSquaredLogarithmicError< InputDataType, OutputDataType > Class Template Reference

The mean squared logarithmic error performance function measures the network's performance according to the mean of squared logarithmic errors. More...

Public Member Functions

 MeanSquaredLogarithmicError ()
 Create the MeanSquaredLogarithmicError object. More...

 
template
<
typename
PredictionType
,
typename
TargetType
,
typename
LossType
>
void Backward (const PredictionType &prediction, const TargetType &target, LossType &loss)
 Ordinary feed backward pass of a neural network. More...

 
template
<
typename
PredictionType
,
typename
TargetType
>
PredictionType::elem_type Forward (const PredictionType &prediction, const TargetType &target)
 Computes the mean squared logarithmic error function. More...

 
OutputDataType & OutputParameter () const
 Get the output parameter. More...

 
OutputDataType & OutputParameter ()
 Modify the output parameter. More...

 
template
<
typename
Archive
>
void serialize (Archive &ar, const uint32_t)
 Serialize the layer. More...

 

Detailed Description


template
<
typename
InputDataType
=
arma::mat
,
typename
OutputDataType
=
arma::mat
>

class mlpack::ann::MeanSquaredLogarithmicError< InputDataType, OutputDataType >

The mean squared logarithmic error performance function measures the network's performance according to the mean of squared logarithmic errors.

Template Parameters
InputDataTypeType of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).
OutputDataTypeType of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).

Definition at line 33 of file mean_squared_logarithmic_error.hpp.

Constructor & Destructor Documentation

◆ MeanSquaredLogarithmicError()

Member Function Documentation

◆ Backward()

void Backward ( const PredictionType &  prediction,
const TargetType &  target,
LossType &  loss 
)

Ordinary feed backward pass of a neural network.

Parameters
predictionPredictions used for evaluating the specified loss function.
targetThe target vector.
lossThe calculated error.

◆ Forward()

PredictionType::elem_type Forward ( const PredictionType &  prediction,
const TargetType &  target 
)

Computes the mean squared logarithmic error function.

Parameters
predictionPredictions used for evaluating the specified loss function.
targetThe target vector.

◆ OutputParameter() [1/2]

OutputDataType& OutputParameter ( ) const
inline

Get the output parameter.

Definition at line 66 of file mean_squared_logarithmic_error.hpp.

◆ OutputParameter() [2/2]

OutputDataType& OutputParameter ( )
inline

Modify the output parameter.

Definition at line 68 of file mean_squared_logarithmic_error.hpp.

References MeanSquaredLogarithmicError< InputDataType, OutputDataType >::serialize().

◆ serialize()

void serialize ( Archive &  ar,
const uint32_t   
)

The documentation for this class was generated from the following file: