The Log-Hyperbolic-Cosine loss function is often used to improve variational auto encoder. More...
Public Member Functions | |
| LogCoshLoss (const double a=1.0) | |
| Create the Log-Hyperbolic-Cosine object with the specified parameters. More... | |
| double | A () const |
| Get the value of hyperparameter a. More... | |
| double & | A () |
| Modify the value of hyperparameter a. More... | |
template < typename PredictionType , typename TargetType , typename LossType > | |
| void | Backward (const PredictionType &prediction, const TargetType &target, LossType &loss) |
| Ordinary feed backward pass of a neural network. More... | |
template < typename PredictionType , typename TargetType > | |
| PredictionType::elem_type | Forward (const PredictionType &prediction, const TargetType &target) |
| Computes the Log-Hyperbolic-Cosine loss function. More... | |
| OutputDataType & | OutputParameter () const |
| Get the output parameter. More... | |
| OutputDataType & | OutputParameter () |
| Modify the output parameter. More... | |
template < typename Archive > | |
| void | serialize (Archive &ar, const uint32_t) |
| Serialize the loss function. More... | |
The Log-Hyperbolic-Cosine loss function is often used to improve variational auto encoder.
This function is the log of hyperbolic cosine of difference between true values and predicted values.
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
Definition at line 35 of file log_cosh_loss.hpp.
| LogCoshLoss | ( | const double | a = 1.0 | ) |
Create the Log-Hyperbolic-Cosine object with the specified parameters.
| a | A double type value for smoothening loss function. It must be positive a real number, Sharpness of loss function is directly proportional to a. It can also act as a scaling factor hence making the loss function more sensitive to small losses around the origin. Default value = 1.0. |
|
inline |
Get the value of hyperparameter a.
Definition at line 81 of file log_cosh_loss.hpp.
|
inline |
Modify the value of hyperparameter a.
Definition at line 83 of file log_cosh_loss.hpp.
References LogCoshLoss< InputDataType, OutputDataType >::serialize().
| void Backward | ( | const PredictionType & | prediction, |
| const TargetType & | target, | ||
| LossType & | loss | ||
| ) |
Ordinary feed backward pass of a neural network.
| prediction | Predictions used for evaluating the specified loss function. |
| target | The target vector. |
| loss | The calculated error. |
| PredictionType::elem_type Forward | ( | const PredictionType & | prediction, |
| const TargetType & | target | ||
| ) |
Computes the Log-Hyperbolic-Cosine loss function.
| prediction | Predictions used for evaluating the specified loss function. |
| target | Target data to compare with. |
|
inline |
Get the output parameter.
Definition at line 76 of file log_cosh_loss.hpp.
|
inline |
Modify the output parameter.
Definition at line 78 of file log_cosh_loss.hpp.
| void serialize | ( | Archive & | ar, |
| const uint32_t | |||
| ) |
Serialize the loss function.
Referenced by LogCoshLoss< InputDataType, OutputDataType >::A().