Implementation of the LSTM module class. More...
Public Member Functions | |
| LSTM () | |
| Create the LSTM object. More... | |
| LSTM (const size_t inSize, const size_t outSize, const size_t rho=std::numeric_limits< size_t >::max()) | |
| Create the LSTM layer object using the specified parameters. More... | |
| LSTM (const LSTM &layer) | |
| Copy constructor. More... | |
| LSTM (LSTM &&) | |
| Move constructor. More... | |
template < typename InputType , typename ErrorType , typename GradientType > | |
| void | Backward (const InputType &input, const ErrorType &gy, GradientType &g) |
| Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More... | |
| OutputDataType const & | Delta () const |
| Get the delta. More... | |
| OutputDataType & | Delta () |
| Modify the delta. More... | |
template < typename InputType , typename OutputType > | |
| void | Forward (const InputType &input, OutputType &output) |
| Ordinary feed-forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
template < typename InputType , typename OutputType > | |
| void | Forward (const InputType &input, OutputType &output, OutputType &cellState, bool useCellState=false) |
| Ordinary feed-forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
template < typename InputType , typename ErrorType , typename GradientType > | |
| void | Gradient (const InputType &input, const ErrorType &error, GradientType &gradient) |
| OutputDataType const & | Gradient () const |
| Get the gradient. More... | |
| OutputDataType & | Gradient () |
| Modify the gradient. More... | |
| size_t | InputShape () const |
| Get the shape of the input. More... | |
| size_t | InSize () const |
| Get the number of input units. More... | |
| LSTM & | operator= (const LSTM &layer) |
| Copy assignment operator. More... | |
| LSTM & | operator= (LSTM &&layer) |
| Move assignment operator. More... | |
| OutputDataType const & | OutputParameter () const |
| Get the output parameter. More... | |
| OutputDataType & | OutputParameter () |
| Modify the output parameter. More... | |
| size_t | OutSize () const |
| Get the number of output units. More... | |
| OutputDataType const & | Parameters () const |
| Get the parameters. More... | |
| OutputDataType & | Parameters () |
| Modify the parameters. More... | |
| void | Reset () |
| void | ResetCell (const size_t size) |
| size_t | Rho () const |
| Get the maximum number of steps to backpropagate through time (BPTT). More... | |
| size_t & | Rho () |
| Modify the maximum number of steps to backpropagate through time (BPTT). More... | |
template < typename Archive > | |
| void | serialize (Archive &ar, const uint32_t) |
| Serialize the layer. More... | |
| size_t | WeightSize () const |
| Get the size of the weights. More... | |
Implementation of the LSTM module class.
The implementation corresponds to the following algorithm:
Note that if an LSTM layer is desired as the first layer of a neural network, an IdentityLayer should be added to the network as the first layer, and then the LSTM layer should be added.
For more information, see the following.
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
Definition at line 84 of file layer_types.hpp.
| LSTM | ( | const size_t | inSize, |
| const size_t | outSize, | ||
| const size_t | rho = std::numeric_limits< size_t >::max() |
||
| ) |
Create the LSTM layer object using the specified parameters.
| inSize | The number of input units. |
| outSize | The number of output units. |
| rho | Maximum number of steps to backpropagate through time (BPTT). |
| void Backward | ( | const InputType & | input, |
| const ErrorType & | gy, | ||
| GradientType & | g | ||
| ) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
| input | The propagated input activation. |
| gy | The backpropagated error. |
| g | The calculated gradient. |
|
inline |
| void Forward | ( | const InputType & | input, |
| OutputType & | output | ||
| ) |
Ordinary feed-forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
| input | Input data used for evaluating the specified function. |
| output | Resulting output activation. |
| void Forward | ( | const InputType & | input, |
| OutputType & | output, | ||
| OutputType & | cellState, | ||
| bool | useCellState = false |
||
| ) |
Ordinary feed-forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
| void Gradient | ( | const InputType & | input, |
| const ErrorType & | error, | ||
| GradientType & | gradient | ||
| ) |
|
inline |
|
inline |
Get the shape of the input.
Definition at line 193 of file lstm.hpp.
References LSTM< InputDataType, OutputDataType >::serialize().
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
| void Reset | ( | ) |
| void ResetCell | ( | const size_t | size | ) |
|
inline |
|
inline |
| void serialize | ( | Archive & | ar, |
| const uint32_t | |||
| ) |
Serialize the layer.
Referenced by LSTM< InputDataType, OutputDataType >::InputShape().
|
inline |