Implementation of the AdaptiveMeanPooling. More...
Public Member Functions | |
| AdaptiveMeanPooling () | |
| Create the AdaptiveMeanPooling object. More... | |
| AdaptiveMeanPooling (const size_t outputWidth, const size_t outputHeight) | |
| Create the AdaptiveMeanPooling object. More... | |
| AdaptiveMeanPooling (const std::tuple< size_t, size_t > &outputShape) | |
| Create the AdaptiveMeanPooling object. More... | |
template < typename eT > | |
| void | Backward (const arma::Mat< eT > &input, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
| Ordinary feed backward pass of a neural network, using 3rd-order tensors as input, calculating the function f(x) by propagating x backwards through f. More... | |
| const OutputDataType & | Delta () const |
| Get the delta. More... | |
| OutputDataType & | Delta () |
| Modify the delta. More... | |
template < typename eT > | |
| void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
| Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
| size_t | InputHeight () const |
| Get the input height. More... | |
| size_t & | InputHeight () |
| Modify the input height. More... | |
| size_t | InputSize () const |
| Get the input size. More... | |
| size_t | InputWidth () const |
| Get the input width. More... | |
| size_t & | InputWidth () |
| Modify the input width. More... | |
| size_t | OutputHeight () const |
| Get the output height. More... | |
| size_t & | OutputHeight () |
| Modify the output height. More... | |
| const OutputDataType & | OutputParameter () const |
| Get the output parameter. More... | |
| OutputDataType & | OutputParameter () |
| Modify the output parameter. More... | |
| size_t | OutputSize () const |
| Get the output size. More... | |
| size_t | OutputWidth () const |
| Get the output width. More... | |
| size_t & | OutputWidth () |
| Modify the output width. More... | |
template < typename Archive > | |
| void | serialize (Archive &ar, const uint32_t version) |
| Serialize the layer. More... | |
| size_t | WeightSize () const |
| Get the size of the weights. More... | |
Implementation of the AdaptiveMeanPooling.
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
Definition at line 34 of file adaptive_mean_pooling.hpp.
Create the AdaptiveMeanPooling object.
| AdaptiveMeanPooling | ( | const size_t | outputWidth, |
| const size_t | outputHeight | ||
| ) |
Create the AdaptiveMeanPooling object.
| outputWidth | Width of the output. |
| outputHeight | Height of the output. |
| AdaptiveMeanPooling | ( | const std::tuple< size_t, size_t > & | outputShape | ) |
Create the AdaptiveMeanPooling object.
| outputShape | A two-value tuple indicating width and height of the output. |
| void Backward | ( | const arma::Mat< eT > & | input, |
| const arma::Mat< eT > & | gy, | ||
| arma::Mat< eT > & | g | ||
| ) |
Ordinary feed backward pass of a neural network, using 3rd-order tensors as input, calculating the function f(x) by propagating x backwards through f.
Using the results from the feed forward pass.
| input | The propagated input activation. |
| gy | The backpropagated error. |
| g | The calculated gradient. |
|
inline |
Get the delta.
Definition at line 88 of file adaptive_mean_pooling.hpp.
|
inline |
Modify the delta.
Definition at line 90 of file adaptive_mean_pooling.hpp.
| void Forward | ( | const arma::Mat< eT > & | input, |
| arma::Mat< eT > & | output | ||
| ) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
| input | Input data used for evaluating the specified function. |
| output | Resulting output activation. |
|
inline |
Get the input height.
Definition at line 98 of file adaptive_mean_pooling.hpp.
|
inline |
Modify the input height.
Definition at line 100 of file adaptive_mean_pooling.hpp.
|
inline |
Get the input size.
Definition at line 113 of file adaptive_mean_pooling.hpp.
|
inline |
Get the input width.
Definition at line 93 of file adaptive_mean_pooling.hpp.
|
inline |
Modify the input width.
Definition at line 95 of file adaptive_mean_pooling.hpp.
|
inline |
Get the output height.
Definition at line 108 of file adaptive_mean_pooling.hpp.
|
inline |
Modify the output height.
Definition at line 110 of file adaptive_mean_pooling.hpp.
|
inline |
Get the output parameter.
Definition at line 81 of file adaptive_mean_pooling.hpp.
|
inline |
Modify the output parameter.
Definition at line 85 of file adaptive_mean_pooling.hpp.
|
inline |
Get the output size.
Definition at line 116 of file adaptive_mean_pooling.hpp.
|
inline |
Get the output width.
Definition at line 103 of file adaptive_mean_pooling.hpp.
|
inline |
Modify the output width.
Definition at line 105 of file adaptive_mean_pooling.hpp.
| void serialize | ( | Archive & | ar, |
| const uint32_t | version | ||
| ) |
Serialize the layer.
Referenced by AdaptiveMeanPooling< InputDataType, OutputDataType >::WeightSize().
|
inline |
Get the size of the weights.
Definition at line 119 of file adaptive_mean_pooling.hpp.
References Log::Fatal, and AdaptiveMeanPooling< InputDataType, OutputDataType >::serialize().