14 #ifndef MLPACK_METHODS_CF_DECOMPOSITION_POLICIES_BIAS_SVD_METHOD_HPP    15 #define MLPACK_METHODS_CF_DECOMPOSITION_POLICIES_BIAS_SVD_METHOD_HPP    52                 const double alpha = 0.02,
    53                 const double lambda = 0.05) :
    54       maxIterations(maxIterations),
    73   void Apply(
const arma::mat& data,
    76              const size_t maxIterations,
    82     biassvd.
Apply(data, rank, w, h, p, q);
    91   double GetRating(
const size_t user, 
const size_t item)
 const    94         arma::as_scalar(w.row(item) * h.col(user)) + p(item) + q(user);
   106     rating = w * h.col(user) + p + q(user);
   121   template<
typename NeighborSearchPolicy>
   123                        const size_t numUsersForSimilarity,
   124                        arma::Mat<size_t>& neighborhood,
   125                        arma::mat& similarities)
 const   129     arma::mat query(h.n_rows, users.n_elem);
   131     for (
size_t i = 0; i < users.n_elem; ++i)
   132       query.col(i) = h.col(users(i));
   134     NeighborSearchPolicy neighborSearch(h);
   135     neighborSearch.Search(
   136         query, numUsersForSimilarity, neighborhood, similarities);
   140   const arma::mat& 
W()
 const { 
return w; }
   142   const arma::mat& 
H()
 const { 
return h; }
   144   const arma::vec& 
Q()
 const { 
return q; }
   146   const arma::vec& 
P()
 const { 
return p; }
   154   double Alpha()
 const { 
return alpha; }
   166   template<
typename Archive>
   169     ar(CEREAL_NVP(maxIterations));
   170     ar(CEREAL_NVP(alpha));
   171     ar(CEREAL_NVP(lambda));
   180   size_t maxIterations;
 double GetRating(const size_t user, const size_t item) const
Return predicted rating given user ID and item ID. 
 
double & Lambda()
Modify regularization parameter. 
 
double Lambda() const
Get regularization parameter. 
 
void Apply(const arma::mat &data, const arma::sp_mat &, const size_t rank, const size_t maxIterations, const double, const bool)
Apply Collaborative Filtering to the provided data set using the bias SVD. 
 
Bias SVD is an improvement on Regularized SVD which is a matrix factorization techniques. 
 
void Apply(const arma::mat &data, const size_t rank, arma::mat &u, arma::mat &v, arma::vec &p, arma::vec &q)
Trains the model and obtains user/item matrices and user/item bias. 
 
void GetNeighborhood(const arma::Col< size_t > &users, const size_t numUsersForSimilarity, arma::Mat< size_t > &neighborhood, arma::mat &similarities) const
Get the neighborhood and corresponding similarities for a set of users. 
 
Linear algebra utility functions, generally performed on matrices or vectors. 
 
const arma::vec & P() const
Get the Item Bias Vector. 
 
The core includes that mlpack expects; standard C++ includes and Armadillo. 
 
const arma::vec & Q() const
Get the User Bias Vector. 
 
const arma::mat & W() const
Get the Item Matrix. 
 
size_t MaxIterations() const
Get the number of iterations. 
 
size_t & MaxIterations()
Modify the number of iterations. 
 
void serialize(Archive &ar, const uint32_t)
Serialization. 
 
BiasSVDPolicy(const size_t maxIterations=10, const double alpha=0.02, const double lambda=0.05)
Use Bias SVD method to perform collaborative filtering. 
 
void GetRatingOfUser(const size_t user, arma::vec &rating) const
Get predicted ratings for a user. 
 
const arma::mat & H() const
Get the User Matrix. 
 
Implementation of the Bias SVD policy to act as a wrapper when accessing Bias SVD from within CFType...
 
double Alpha() const
Get learning rate. 
 
double & Alpha()
Modify learning rate.