14 #ifndef MLPACK_METHODS_BIAS_SVD_BIAS_SVD_FUNCTION_HPP 15 #define MLPACK_METHODS_BIAS_SVD_BIAS_SVD_FUNCTION_HPP 18 #include <ensmallen.hpp> 30 template <
typename MatType = arma::mat>
58 double Evaluate(
const arma::mat& parameters)
const;
69 double Evaluate(
const arma::mat& parameters,
71 const size_t batchSize = 1)
const;
81 void Gradient(
const arma::mat& parameters,
82 arma::mat& gradient)
const;
97 template <
typename GradType>
98 void Gradient(
const arma::mat& parameters,
101 const size_t batchSize = 1)
const;
107 const arma::mat&
Dataset()
const {
return data; }
122 size_t Rank()
const {
return rank; }
128 arma::mat initialPoint;
156 inline double StandardSGD::Optimize(
158 arma::mat& parameters);
162 inline double ParallelSGD<ExponentialBackoff>::Optimize(
164 arma::mat& parameters);
172 #include "bias_svd_function_impl.hpp" Linear algebra utility functions, generally performed on matrices or vectors.
size_t NumUsers() const
Return the number of users in the data.
void Shuffle()
Shuffle the points in the dataset.
The core includes that mlpack expects; standard C++ includes and Armadillo.
This class contains methods which are used to calculate the cost of BiasSVD's objective function...
BiasSVDFunction(const MatType &data, const size_t rank, const double lambda)
Constructor for BiasSVDFunction class.
size_t Rank() const
Return the rank used for the factorization.
const arma::mat & GetInitialPoint() const
Return the initial point for the optimization.
const arma::mat & Dataset() const
Return the dataset passed into the constructor.
double Lambda() const
Return the regularization parameters.
double Evaluate(const arma::mat ¶meters) const
Evaluates the cost function over all examples in the data.
size_t NumFunctions() const
Return the number of training examples. Useful for SGD optimizer.
void Gradient(const arma::mat ¶meters, arma::mat &gradient) const
Evaluates the full gradient of the cost function over all the training examples.
size_t NumItems() const
Return the number of items in the data.