bias_svd_function.hpp
Go to the documentation of this file.
1 
14 #ifndef MLPACK_METHODS_BIAS_SVD_BIAS_SVD_FUNCTION_HPP
15 #define MLPACK_METHODS_BIAS_SVD_BIAS_SVD_FUNCTION_HPP
16 
17 #include <mlpack/prereqs.hpp>
18 #include <ensmallen.hpp>
19 
20 namespace mlpack {
21 namespace svd {
22 
30 template <typename MatType = arma::mat>
32 {
33  public:
43  BiasSVDFunction(const MatType& data,
44  const size_t rank,
45  const double lambda);
46 
50  void Shuffle();
51 
58  double Evaluate(const arma::mat& parameters) const;
59 
69  double Evaluate(const arma::mat& parameters,
70  const size_t start,
71  const size_t batchSize = 1) const;
72 
81  void Gradient(const arma::mat& parameters,
82  arma::mat& gradient) const;
83 
97  template <typename GradType>
98  void Gradient(const arma::mat& parameters,
99  const size_t start,
100  GradType& gradient,
101  const size_t batchSize = 1) const;
102 
104  const arma::mat& GetInitialPoint() const { return initialPoint; }
105 
107  const arma::mat& Dataset() const { return data; }
108 
110  size_t NumFunctions() const { return data.n_cols; }
111 
113  size_t NumUsers() const { return numUsers; }
114 
116  size_t NumItems() const { return numItems; }
117 
119  double Lambda() const { return lambda; }
120 
122  size_t Rank() const { return rank; }
123 
124  private:
126  MatType data;
128  arma::mat initialPoint;
130  size_t rank;
132  double lambda;
134  size_t numUsers;
136  size_t numItems;
137 };
138 
139 } // namespace svd
140 } // namespace mlpack
141 
146 namespace ens {
147 
154  template <>
155  template <>
156  inline double StandardSGD::Optimize(
158  arma::mat& parameters);
159 
160  template <>
161  template <>
162  inline double ParallelSGD<ExponentialBackoff>::Optimize(
164  arma::mat& parameters);
165 
166 } // namespace ens
167 
172 #include "bias_svd_function_impl.hpp"
173 
174 #endif
Linear algebra utility functions, generally performed on matrices or vectors.
size_t NumUsers() const
Return the number of users in the data.
void Shuffle()
Shuffle the points in the dataset.
The core includes that mlpack expects; standard C++ includes and Armadillo.
This class contains methods which are used to calculate the cost of BiasSVD&#39;s objective function...
BiasSVDFunction(const MatType &data, const size_t rank, const double lambda)
Constructor for BiasSVDFunction class.
size_t Rank() const
Return the rank used for the factorization.
const arma::mat & GetInitialPoint() const
Return the initial point for the optimization.
const arma::mat & Dataset() const
Return the dataset passed into the constructor.
double Lambda() const
Return the regularization parameters.
double Evaluate(const arma::mat &parameters) const
Evaluates the cost function over all examples in the data.
size_t NumFunctions() const
Return the number of training examples. Useful for SGD optimizer.
void Gradient(const arma::mat &parameters, arma::mat &gradient) const
Evaluates the full gradient of the cost function over all the training examples.
size_t NumItems() const
Return the number of items in the data.