batch_svd_method.hpp
Go to the documentation of this file.
1 
13 #ifndef MLPACK_METHODS_CF_DECOMPOSITION_POLICIES_BATCH_SVD_METHOD_HPP
14 #define MLPACK_METHODS_CF_DECOMPOSITION_POLICIES_BATCH_SVD_METHOD_HPP
15 
16 #include <mlpack/prereqs.hpp>
21 
22 namespace mlpack {
23 namespace cf {
24 
44 {
45  public:
58  template<typename MatType>
59  void Apply(const MatType& /* data */,
60  const arma::sp_mat& cleanedData,
61  const size_t rank,
62  const size_t maxIterations,
63  const double minResidue,
64  const bool mit)
65  {
66  if (mit)
67  {
68  amf::MaxIterationTermination iter(maxIterations);
69 
70  // Do singular value decomposition using the batch SVD algorithm.
72  amf::SVDBatchLearning> svdbatch(iter);
73 
74  svdbatch.Apply(cleanedData, rank, w, h);
75  }
76  else
77  {
78  amf::SimpleResidueTermination srt(minResidue, maxIterations);
79 
80  // Do singular value decomposition using the batch SVD algorithm.
81  amf::SVDBatchFactorizer<> svdbatch(srt);
82 
83  svdbatch.Apply(cleanedData, rank, w, h);
84  }
85  }
86 
93  double GetRating(const size_t user, const size_t item) const
94  {
95  double rating = arma::as_scalar(w.row(item) * h.col(user));
96  return rating;
97  }
98 
105  void GetRatingOfUser(const size_t user, arma::vec& rating) const
106  {
107  rating = w * h.col(user);
108  }
109 
122  template<typename NeighborSearchPolicy>
123  void GetNeighborhood(const arma::Col<size_t>& users,
124  const size_t numUsersForSimilarity,
125  arma::Mat<size_t>& neighborhood,
126  arma::mat& similarities) const
127  {
128  // We want to avoid calculating the full rating matrix, so we will do
129  // nearest neighbor search only on the H matrix, using the observation that
130  // if the rating matrix X = W*H, then d(X.col(i), X.col(j)) = d(W H.col(i),
131  // W H.col(j)). This can be seen as nearest neighbor search on the H
132  // matrix with the Mahalanobis distance where M^{-1} = W^T W. So, we'll
133  // decompose M^{-1} = L L^T (the Cholesky decomposition), and then multiply
134  // H by L^T. Then we can perform nearest neighbor search.
135  arma::mat l = arma::chol(w.t() * w);
136  arma::mat stretchedH = l * h; // Due to the Armadillo API, l is L^T.
137 
138  // Temporarily store feature vector of queried users.
139  arma::mat query(stretchedH.n_rows, users.n_elem);
140  // Select feature vectors of queried users.
141  for (size_t i = 0; i < users.n_elem; ++i)
142  query.col(i) = stretchedH.col(users(i));
143 
144  NeighborSearchPolicy neighborSearch(stretchedH);
145  neighborSearch.Search(
146  query, numUsersForSimilarity, neighborhood, similarities);
147  }
148 
150  const arma::mat& W() const { return w; }
152  const arma::mat& H() const { return h; }
153 
157  template<typename Archive>
158  void serialize(Archive& ar, const uint32_t /* version */)
159  {
160  ar(CEREAL_NVP(w));
161  ar(CEREAL_NVP(h));
162  }
163 
164  private:
166  arma::mat w;
168  arma::mat h;
169 };
170 
171 } // namespace cf
172 } // namespace mlpack
173 
174 #endif
double GetRating(const size_t user, const size_t item) const
Return predicted rating given user ID and item ID.
This class implements AMF (alternating matrix factorization) on the given matrix V.
Definition: amf.hpp:78
This initialization rule for AMF simply fills the W and H matrices with uniform random noise in [0...
Definition: random_init.hpp:25
Linear algebra utility functions, generally performed on matrices or vectors.
void serialize(Archive &ar, const uint32_t)
Serialization.
The core includes that mlpack expects; standard C++ includes and Armadillo.
const arma::mat & W() const
Get the Item Matrix.
This class implements a simple residue-based termination policy.
This class implements SVD batch learning with momentum.
double Apply(const MatType &V, const size_t r, arma::mat &W, arma::mat &H)
Apply Alternating Matrix Factorization to the provided matrix.
void GetNeighborhood(const arma::Col< size_t > &users, const size_t numUsersForSimilarity, arma::Mat< size_t > &neighborhood, arma::mat &similarities) const
Get the neighborhood and corresponding similarities for a set of users.
Implementation of the Batch SVD policy to act as a wrapper when accessing Batch SVD from within CFTyp...
This termination policy only terminates when the maximum number of iterations has been reached...
void GetRatingOfUser(const size_t user, arma::vec &rating) const
Get predicted ratings for a user.
void Apply(const MatType &, const arma::sp_mat &cleanedData, const size_t rank, const size_t maxIterations, const double minResidue, const bool mit)
Apply Collaborative Filtering to the provided data set using the batch SVD method.
const arma::mat & H() const
Get the User Matrix.