13 #ifndef MLPACK_METHODS_ANN_LAYER_ATROUS_CONVOLUTION_HPP    14 #define MLPACK_METHODS_ANN_LAYER_ATROUS_CONVOLUTION_HPP    46     typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>,
    47     typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>,
    48     typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>,
    49     typename InputDataType = arma::mat,
    50     typename OutputDataType = arma::mat
    80                     const size_t kernelWidth,
    81                     const size_t kernelHeight,
    82                     const size_t strideWidth = 1,
    83                     const size_t strideHeight = 1,
    84                     const size_t padW = 0,
    85                     const size_t padH = 0,
    86                     const size_t inputWidth = 0,
    87                     const size_t inputHeight = 0,
    88                     const size_t dilationWidth = 1,
    89                     const size_t dilationHeight = 1,
    90                     const std::string& paddingType = 
"None");
   117                     const size_t outSize,
   118                     const size_t kernelWidth,
   119                     const size_t kernelHeight,
   120                     const size_t strideWidth,
   121                     const size_t strideHeight,
   122                     const std::tuple<size_t, size_t>& padW,
   123                     const std::tuple<size_t, size_t>& padH,
   124                     const size_t inputWidth = 0,
   125                     const size_t inputHeight = 0,
   126                     const size_t dilationWidth = 1,
   127                     const size_t dilationHeight = 1,
   128                     const std::string& paddingType = 
"None");
   142   template<
typename eT>
   143   void Forward(
const arma::Mat<eT>& input, arma::Mat<eT>& output);
   154   template<
typename eT>
   155   void Backward(
const arma::Mat<eT>& ,
   156                 const arma::Mat<eT>& gy,
   166   template<
typename eT>
   167   void Gradient(
const arma::Mat<eT>& ,
   168                 const arma::Mat<eT>& error,
   169                 arma::Mat<eT>& gradient);
   177   arma::cube 
const& 
Weight()
 const { 
return weight; }
   182   arma::mat 
const& 
Bias()
 const { 
return bias; }
   184   arma::mat& 
Bias() { 
return bias; }
   192   OutputDataType 
const& 
Delta()
 const { 
return delta; }
   194   OutputDataType& 
Delta() { 
return delta; }
   197   OutputDataType 
const& 
Gradient()
 const { 
return gradient; }
   265     return (outSize * inSize * kernelWidth * kernelHeight) + outSize;
   271     return inputHeight * inputWidth * inSize;
   277   template<
typename Archive>
   278   void serialize(Archive& ar, 
const uint32_t );
   292   size_t ConvOutSize(
const size_t size,
   295                      const size_t pSideOne,
   296                      const size_t pSideTwo,
   299     return std::floor(size + pSideOne + pSideTwo - d * (k - 1) - 1) / s + 1;
   305   void InitializeSamePadding(
size_t& padWLeft,
   308                              size_t& padHTop) 
const;
   316   template<
typename eT>
   317   void Rotate180(
const arma::Cube<eT>& input, arma::Cube<eT>& output)
   319     output = arma::Cube<eT>(input.n_rows, input.n_cols, input.n_slices);
   322     for (
size_t s = 0; s < output.n_slices; s++)
   323       output.slice(s) = arma::fliplr(arma::flipud(input.slice(s)));
   332   template<
typename eT>
   333   void Rotate180(
const arma::Mat<eT>& input, arma::Mat<eT>& output)
   336     output = arma::fliplr(arma::flipud(input));
   361   OutputDataType weights;
   382   size_t dilationWidth;
   385   size_t dilationHeight;
   388   arma::cube outputTemp;
   391   arma::cube inputPaddedTemp;
   397   arma::cube gradientTemp;
   403   OutputDataType delta;
   406   OutputDataType gradient;
   409   OutputDataType outputParameter;
   416 #include "atrous_convolution_impl.hpp" OutputDataType const  & Parameters() const
Get the parameters. 
 
ann::Padding & Padding()
Modify the internal Padding layer. 
 
OutputDataType const  & OutputParameter() const
Get the output parameter. 
 
size_t InputShape() const
Get the shape of the input. 
 
size_t & DilationHeight()
Modify the dilation rate on the Y axis. 
 
size_t & StrideWidth()
Modify the stride width. 
 
arma::mat & Bias()
Modify the bias of the layer. 
 
Linear algebra utility functions, generally performed on matrices or vectors. 
 
Implementation of the Padding module class. 
 
OutputDataType & Delta()
Modify the delta. 
 
size_t OutputHeight() const
Get the output height. 
 
size_t & InputHeight()
Modify the input height. 
 
The core includes that mlpack expects; standard C++ includes and Armadillo. 
 
size_t KernelWidth() const
Get the kernel width. 
 
OutputDataType & OutputParameter()
Modify the output parameter. 
 
OutputDataType & Parameters()
Modify the parameters. 
 
ann::Padding const  & Padding() const
Get the internal Padding layer. 
 
size_t DilationWidth() const
Get the dilation rate on the X axis. 
 
size_t WeightSize() const
Get size of the weight matrix. 
 
void Forward(const arma::Mat< eT > &input, arma::Mat< eT > &output)
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activ...
 
arma::cube const  & Weight() const
Get the weight of the layer. 
 
AtrousConvolution()
Create the AtrousConvolution object. 
 
size_t OutputWidth() const
Get the output width. 
 
OutputDataType const  & Gradient() const
Get the gradient. 
 
arma::cube & Weight()
Modify the weight of the layer. 
 
size_t KernelHeight() const
Get the kernel height. 
 
size_t InputSize() const
Get the input size. 
 
size_t & InputWidth()
Modify input the width. 
 
size_t & StrideHeight()
Modify the stride height. 
 
size_t & KernelWidth()
Modify the kernel width. 
 
size_t StrideHeight() const
Get the stride height. 
 
size_t InputHeight() const
Get the input height. 
 
arma::mat const  & Bias() const
Get the bias of the layer. 
 
size_t & DilationWidth()
Modify the dilation rate on the X axis. 
 
size_t StrideWidth() const
Get the stride width. 
 
size_t InputWidth() const
Get the input width. 
 
size_t & KernelHeight()
Modify the kernel height. 
 
void Backward(const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g)
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backw...
 
size_t DilationHeight() const
Get the dilation rate on the Y axis. 
 
OutputDataType & Gradient()
Modify the gradient. 
 
size_t & OutputWidth()
Modify the output width. 
 
size_t & OutputHeight()
Modify the output height. 
 
OutputDataType const  & Delta() const
Get the delta. 
 
size_t OutputSize() const
Get the output size. 
 
void serialize(Archive &ar, const uint32_t)
Serialize the layer. 
 
Implementation of the Atrous Convolution class.