13 #ifndef MLPACK_METHODS_ANN_LAYER_ATROUS_CONVOLUTION_HPP 14 #define MLPACK_METHODS_ANN_LAYER_ATROUS_CONVOLUTION_HPP 46 typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>,
47 typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>,
48 typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>,
49 typename InputDataType = arma::mat,
50 typename OutputDataType = arma::mat
80 const size_t kernelWidth,
81 const size_t kernelHeight,
82 const size_t strideWidth = 1,
83 const size_t strideHeight = 1,
84 const size_t padW = 0,
85 const size_t padH = 0,
86 const size_t inputWidth = 0,
87 const size_t inputHeight = 0,
88 const size_t dilationWidth = 1,
89 const size_t dilationHeight = 1,
90 const std::string& paddingType =
"None");
117 const size_t outSize,
118 const size_t kernelWidth,
119 const size_t kernelHeight,
120 const size_t strideWidth,
121 const size_t strideHeight,
122 const std::tuple<size_t, size_t>& padW,
123 const std::tuple<size_t, size_t>& padH,
124 const size_t inputWidth = 0,
125 const size_t inputHeight = 0,
126 const size_t dilationWidth = 1,
127 const size_t dilationHeight = 1,
128 const std::string& paddingType =
"None");
142 template<
typename eT>
143 void Forward(
const arma::Mat<eT>& input, arma::Mat<eT>& output);
154 template<
typename eT>
155 void Backward(
const arma::Mat<eT>& ,
156 const arma::Mat<eT>& gy,
166 template<
typename eT>
167 void Gradient(
const arma::Mat<eT>& ,
168 const arma::Mat<eT>& error,
169 arma::Mat<eT>& gradient);
177 arma::cube
const&
Weight()
const {
return weight; }
182 arma::mat
const&
Bias()
const {
return bias; }
184 arma::mat&
Bias() {
return bias; }
192 OutputDataType
const&
Delta()
const {
return delta; }
194 OutputDataType&
Delta() {
return delta; }
197 OutputDataType
const&
Gradient()
const {
return gradient; }
265 return (outSize * inSize * kernelWidth * kernelHeight) + outSize;
271 return inputHeight * inputWidth * inSize;
277 template<
typename Archive>
278 void serialize(Archive& ar,
const uint32_t );
292 size_t ConvOutSize(
const size_t size,
295 const size_t pSideOne,
296 const size_t pSideTwo,
299 return std::floor(size + pSideOne + pSideTwo - d * (k - 1) - 1) / s + 1;
305 void InitializeSamePadding(
size_t& padWLeft,
308 size_t& padHTop)
const;
316 template<
typename eT>
317 void Rotate180(
const arma::Cube<eT>& input, arma::Cube<eT>& output)
319 output = arma::Cube<eT>(input.n_rows, input.n_cols, input.n_slices);
322 for (
size_t s = 0; s < output.n_slices; s++)
323 output.slice(s) = arma::fliplr(arma::flipud(input.slice(s)));
332 template<
typename eT>
333 void Rotate180(
const arma::Mat<eT>& input, arma::Mat<eT>& output)
336 output = arma::fliplr(arma::flipud(input));
361 OutputDataType weights;
382 size_t dilationWidth;
385 size_t dilationHeight;
388 arma::cube outputTemp;
391 arma::cube inputPaddedTemp;
397 arma::cube gradientTemp;
403 OutputDataType delta;
406 OutputDataType gradient;
409 OutputDataType outputParameter;
416 #include "atrous_convolution_impl.hpp" OutputDataType const & Parameters() const
Get the parameters.
ann::Padding & Padding()
Modify the internal Padding layer.
OutputDataType const & OutputParameter() const
Get the output parameter.
size_t InputShape() const
Get the shape of the input.
size_t & DilationHeight()
Modify the dilation rate on the Y axis.
size_t & StrideWidth()
Modify the stride width.
arma::mat & Bias()
Modify the bias of the layer.
Linear algebra utility functions, generally performed on matrices or vectors.
Implementation of the Padding module class.
OutputDataType & Delta()
Modify the delta.
size_t OutputHeight() const
Get the output height.
size_t & InputHeight()
Modify the input height.
The core includes that mlpack expects; standard C++ includes and Armadillo.
size_t KernelWidth() const
Get the kernel width.
OutputDataType & OutputParameter()
Modify the output parameter.
OutputDataType & Parameters()
Modify the parameters.
ann::Padding const & Padding() const
Get the internal Padding layer.
size_t DilationWidth() const
Get the dilation rate on the X axis.
size_t WeightSize() const
Get size of the weight matrix.
void Forward(const arma::Mat< eT > &input, arma::Mat< eT > &output)
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activ...
arma::cube const & Weight() const
Get the weight of the layer.
AtrousConvolution()
Create the AtrousConvolution object.
size_t OutputWidth() const
Get the output width.
OutputDataType const & Gradient() const
Get the gradient.
arma::cube & Weight()
Modify the weight of the layer.
size_t KernelHeight() const
Get the kernel height.
size_t InputSize() const
Get the input size.
size_t & InputWidth()
Modify input the width.
size_t & StrideHeight()
Modify the stride height.
size_t & KernelWidth()
Modify the kernel width.
size_t StrideHeight() const
Get the stride height.
size_t InputHeight() const
Get the input height.
arma::mat const & Bias() const
Get the bias of the layer.
size_t & DilationWidth()
Modify the dilation rate on the X axis.
size_t StrideWidth() const
Get the stride width.
size_t InputWidth() const
Get the input width.
size_t & KernelHeight()
Modify the kernel height.
void Backward(const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g)
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backw...
size_t DilationHeight() const
Get the dilation rate on the Y axis.
OutputDataType & Gradient()
Modify the gradient.
size_t & OutputWidth()
Modify the output width.
size_t & OutputHeight()
Modify the output height.
OutputDataType const & Delta() const
Get the delta.
size_t OutputSize() const
Get the output size.
void serialize(Archive &ar, const uint32_t)
Serialize the layer.
Implementation of the Atrous Convolution class.