alpha_dropout.hpp
Go to the documentation of this file.
1 
16 #ifndef MLPACK_METHODS_ANN_LAYER_ALPHA_DROPOUT_HPP
17 #define MLPACK_METHODS_ANN_LAYER_ALPHA_DROPOUT_HPP
18 
19 #include <mlpack/prereqs.hpp>
20 
21 namespace mlpack {
22 namespace ann {
23 
48 template <typename InputDataType = arma::mat,
49  typename OutputDataType = arma::mat>
51 {
52  public:
59  AlphaDropout(const double ratio = 0.5,
60  const double alphaDash = -alpha * lambda);
61 
68  template<typename eT>
69  void Forward(const arma::Mat<eT>& input, arma::Mat<eT>& output);
70 
78  template<typename eT>
79  void Backward(const arma::Mat<eT>& /* input */,
80  const arma::Mat<eT>& gy,
81  arma::Mat<eT>& g);
82 
84  OutputDataType const& OutputParameter() const { return outputParameter; }
86  OutputDataType& OutputParameter() { return outputParameter; }
87 
89  OutputDataType const& Delta() const { return delta; }
91  OutputDataType& Delta() { return delta; }
92 
94  bool Deterministic() const { return deterministic; }
96  bool& Deterministic() { return deterministic; }
97 
99  double Ratio() const { return ratio; }
100 
102  double A() const { return a; }
103 
105  double B() const { return b; }
106 
108  double AlphaDash() const {return alphaDash; }
109 
111  OutputDataType const& Mask() const {return mask;}
112 
115  void Ratio(const double r)
116  {
117  ratio = r;
118  a = pow((1 - ratio) * (1 + ratio * pow(alphaDash, 2)), -0.5);
119  b = -a * alphaDash * ratio;
120  }
121 
125  template<typename Archive>
126  void serialize(Archive& ar, const uint32_t /* version */);
127 
128  private:
130  OutputDataType delta;
131 
133  OutputDataType outputParameter;
134 
136  OutputDataType mask;
137 
139  double ratio;
140 
142  double alphaDash;
143 
145  bool deterministic;
146 
148  static constexpr double alpha = 1.6732632423543772848170429916717;
149 
151  static constexpr double lambda = 1.0507009873554804934193349852946;
152 
154  double a;
155 
157  double b;
158 }; // class AlphaDropout
159 
160 } // namespace ann
161 } // namespace mlpack
162 
163 // Include implementation.
164 #include "alpha_dropout_impl.hpp"
165 
166 #endif
bool & Deterministic()
Modify the value of the deterministic parameter.
void Backward(const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g)
Ordinary feed backward pass of the alpha_dropout layer.
Linear algebra utility functions, generally performed on matrices or vectors.
double A() const
Value to be multiplied with x for affine transformation.
AlphaDropout(const double ratio=0.5, const double alphaDash=-alpha *lambda)
Create the Alpha_Dropout object using the specified ratio.
double Ratio() const
The probability of setting a value to alphaDash.
The core includes that mlpack expects; standard C++ includes and Armadillo.
void serialize(Archive &ar, const uint32_t)
Serialize the layer.
double AlphaDash() const
Value of alphaDash.
OutputDataType & OutputParameter()
Modify the output parameter.
OutputDataType const & Mask() const
Get the mask.
double B() const
Value to be added to a*x for affine transformation.
OutputDataType const & Delta() const
Get the detla.
void Ratio(const double r)
Modify the probability of setting a value to alphaDash.
The alpha - dropout layer is a regularizer that randomly with probability &#39;ratio&#39; sets input values t...
void Forward(const arma::Mat< eT > &input, arma::Mat< eT > &output)
Ordinary feed forward pass of the alpha_dropout layer.
bool Deterministic() const
The value of the deterministic parameter.
OutputDataType const & OutputParameter() const
Get the output parameter.
OutputDataType & Delta()
Modify the delta.